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Abstract

This thesis studies adapted Wasserstein distances and their applications to distribu-
tionally robust optimization (DRO) problems in a dynamic context. In Chapter 3,
we propose a transfer principle to study the adapted 2-Wasserstein distance between
stochastic processes. We obtain an explicit formula for the distance between real-
valued mean-square continuous Gaussian processes by introducing causal factoriza-
tion, an infinite-dimensional analogue of the Cholesky decomposition for operators on
Hilbert spaces. We discuss the existence and uniqueness of this causal factorization
and link it to the canonical representation of Gaussian processes. As a byproduct,
we characterize mean-square continuous Gaussian Volterra processes in terms of their
natural filtrations. Moreover, for real-valued fractional stochastic differential equa-
tions, we show that the synchronous coupling between the driving fractional noises
attains the adapted Wasserstein distance under some monotonicity conditions. Our
results cover a wide class of stochastic processes which are neither Markov processes
nor semi-martingales, including fractional Brownian motions and fractional Ornstein–
Uhlenbeck processes.

Subsequently, we contribute to the adapted Wasserstein distributionally robust
optimization (AW-DRO) problem in both discrete- and continuous- time settings.
This framework addresses decision-making under model uncertainty by optimizing
for the worst-case scenario, where uncertainty is captured by penalizing potential
models in function of their adapted Wasserstein distance to a given reference model.
In Chapter 4, we derive a dynamic duality formula that reformulates the worst-case
expectation as a tractable minimax problem. The inner maximum can be computed
recursively in discrete time, or solved by a path-dependent Hamilton–Jacobi–Bellman
equation in continuous time. We further extend these duality results from the worst-
case expectation to the worst-case expected shortfall, a non-linear expectation. Fi-
nally, we apply the AW-DRO framework to optimal stopping problems in discrete
time. We recast the original problem as a classical Wasserstein DRO on a nested
space by introducing a novel relaxation that considers stopping times with respect to
general filtrations.



In Chapter 5, we study the AW-DRO via sensitivity analysis. We introduce a
real-valued parameter into the penalty function to reflect the strength of model un-
certainty. Our main results derive the first-order sensitivity of the worst-case expec-
tation with respect to the penalization parameter. Moreover, we investigate the case
where a martingale constraint is imposed on the underlying model, as is common for
pricing measures in mathematical finance. By introducing different scaling regimes,
we obtain the continuous-time sensitivities as nontrivial limits of their discrete-time
counterparts. Of independent interest, we also establish a novel stochastic Fubini
theorem for a two-fold forward and Itô integral.
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Chapter 1

Introduction

Stochastic modeling in a dynamic setting is a staple of applied mathematics, with
ubiquitous applications in fields ranging from mathematical finance to machine learn-
ing. Traditionally, models were derived from theoretical considerations, combined
with calibration to data, and often had nice analytic representations. More recently,
models are often obtained through a purely data-driven approach, where they are
constructed from the empirical distributions of observed samples. In both scenarios,
however, the model can easily be misspecified, leading to a discrepancy between the
postulated model and the ground-truth distribution. It is therefore of fundamental
importance to develop methods that are robust to such model uncertainty.

A distributionally robust approach is particularly appealing in this context which
offers a connecting bridge between model-based and model-free methods. Distri-
butionally robust optimization (DRO) is formulated as a minimax problem where a
decision-maker seeks an optimal strategy under the worst-case stochastic model drawn
from an ‘ambiguity set’—a collection of plausible models centered around a given ref-
erence model. The performance and tractability of a DRO problem critically depend
on how this ambiguity set is chosen. In recent years, ambiguity sets constructed using
the Wasserstein distance from optimal transport have gained significant attention in
operations research (Mohajerin Esfahani and Kuhn, 2018, Blanchet and Murthy, 2019,
Gao and Kleywegt, 2022, Gao, 2023), mathematical finance (Obłój and Wiesel, 2021,
Blanchet et al., 2022, Nendel and Sgarabottolo, 2024, Wu and Jaimungal, 2023), and
machine learning (Blanchet et al., 2019, Bai et al., 2023, 2025, Nietert et al., 2023)
due to their statistical guarantees and interpretability. We refer to Rahimian and
Mehrotra (2022), Kuhn et al. (2025) for a comprehensive exposition.

However, for dynamic problems involving stochastic processes, the classical Wasser-
stein distance reveals a fundamental limitation. It views stochastic processes as path-
valued random variables and metrizes the weak topology of probability measures on
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the path space, a topology that proves too coarse for many applications in math-
ematical finance. This ‘static’ viewpoint fails to properly capture the ‘dynamic’ of
information carried by a process’s filtration. Consequently, crucial quantities, such as
the value of an optimal stopping problem, are not continuous with respect to the weak
topology. Different notions of adapted topologies have been proposed to refine the
weak topology, such as Aldous’s extended weak topology (Aldous, 1981), Hellwig’s
information topology (Hellwig, 1996), Hoover–Keisler topology (Hoover and Keisler,
1984, Hoover, 1987), nested distance (Pflug and Pichler, 2012), and the adapted
Wasserstein distance (Lassalle, 2018, Bion–Nadal and Talay, 2019). In the seminal
paper Backhoff-Veraguas et al. (2020b), these notions are unified and proven to be
all equivalent to the initial topology of the optimal stopping problems in a discrete-
time setting. The essence of all aforementioned adapted topologies is to consider not
only the law but also the conditional law of the stochastic process with respect to its
natural filtration. Or, in other words, to incorporate the information flow carried by
the underlying process.

In this thesis, we focus on the adapted Wasserstein distance and its applications
to DRO problems. The adapted Wasserstein distance was first introduced in Lassalle
(2018) as a dynamic counterpart of the Wasserstein distance. For p ≥ 1 and two
stochastic processes X1 and X2, their adapted p-Wasserstein distance is given by

AWp(X1, X2) := inf
π∈Πbc(X1,X2)

Eπ[d(X1, X2)
p]1/p (1.1)

where d is a distance on the path space, and Πbc(X1, X2) is a subset of couplings with
an additional (bi-)causality constraint. Heuristically speaking, a coupling is causal if

given the past of X1, the past of X2 and the future of X1 are independent,

as stated in Backhoff-Veraguas et al. (2017). The term bi-causal means that this
condition holds symmetrically for both processes. We refer to Chapter 2 for a formal
definition. A related notion is the p-causal Wasserstein distance CWp obtained by
replacing the set of bi-causal couplings with the larger set of causal couplings in (1.1).

This leads to the adapted Wasserstein distributionally robust optimization (AW-
DRO) problem, a variant of DRO tailored for dynamic contexts. The aim of AW-DRO
is to optimize the worst-case expectation given by

sup
ν∈B(µ)

Eν [f(X)], (1.2)

where the ambiguity set B(µ) is an adapted Wasserstein ball centered at the reference
model µ.
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However, both computing the adapted Wasserstein distance itself and solving the
AW-DRO problem are difficult, due to the additional causality constraint imposed
on the couplings. This thesis aims to bridge this gap by establishing new theoretical
results that enhance the tractability and applicability of the adapted Wasserstein
distance and the AW-DRO framework.

1.1 Outline and contributions
In this section we will summarize the main results presented in the different chapters
of this thesis without going into the technical details. A more detailed introduction
and literature review will be provided at the beginning of each individual chapter.

Chapter 2 serves as a warm-up, where we introduce basic notations and con-
cepts. From there, we formally introduce the discrete- and continuous- time adapted
Wasserstein distances between probability measures on path spaces, and discuss the
properties of the induced adapted Wasserstein topology. We then introduce the exten-
sion of the adapted Wasserstein distance to the space of adapted stochastic processes
with more general filtrations. This extension, which highlights the crucial role of the
filtration, is essential for the duality results developed in Chapter 4. The material
in this chapter is based on several pioneering works Lassalle (2018), Acciaio et al.
(2020), Bartl et al. (2024).

In Chapter 3, we propose a transfer principle to study the adapted 2-Wasserstein
distance between continuous-time stochastic processes. Heuristically, it says if for
stochastic process Xi there exists a representation Xi = Ti(Yi) such that Xi and Yi

generate the same natural filtration for i = 1, 2, then the adapted Wasserstein dis-
tance between X1 and X2 can be transferred to a bi-causal optimal transport problem
between Y1 and Y2. In essence, this principle encourages us to choose an appropri-
ate representation of a stochastic process leading to a nicer parameterization of the
bi-causal coupling, and hence simplifies the computation of the adapted Wasserstein
distance. In Section 3.4, we first apply the transfer principle and obtain an explicit
formula for the distance between real-valued mean-square continuous Gaussian pro-
cesses by introducing the causal factorization as an infinite-dimensional analogue of
the Cholesky decomposition for operators on Hilbert spaces. In Section 3.3, we discuss
the existence and uniqueness of this causal factorization and link it to the canonical
representation of Gaussian processes (Hida, 1960, Hida and Hitsuda, 1993). As a
byproduct, we characterize mean-square continuous Gaussian Volterra processes in
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terms of their natural filtrations. Moreover, for real-valued fractional stochastic dif-
ferential equations, in Section 3.5 we show that the synchronous coupling between the
driving fractional noises attains the adapted Wasserstein distance under some mono-
tonicity conditions. We apply the transfer principle and reformulate the adapted
Wasserstein distance as a stochastic control problem. By leveraging the functional
Itô formula of Viens and Zhang (2019), we verify the synchronous coupling induces a
classical solution to the associated path-dependent Hamilton–Jacobi–Bellman equa-
tion, and thus we show the optimality. Our results cover a wide class of stochastic
processes which are neither Markov processes nor semi-martingales, including frac-
tional Brownian motions and fractional Ornstein–Uhlenbeck processes. To the best
of our knowledge, unlike existing literature Lassalle (2018), Bion–Nadal and Talay
(2019), Backhoff-Veraguas et al. (2022b), these are the very first results considering
processes beyond semi-martingales. This chapter corresponds to the article Jiang and
Lim (2025).

Subsequently, we contribute to the adapted Wasserstein distributionally robust
optimization (AW-DRO) problem in both discrete- and continuous- time settings.
This framework addresses decision-making under model uncertainty by optimizing
for the worst-case expectation (1.2). Our contribution here is to provide tractable
theoretical results via duality theory and sensitivity analysis.

In Chapter 4, we derive a dynamic duality formula that reformulates the worst-
case expectation as a tractable minimax problem. We first extend (1.2) to a general
penalized form

V = sup
ν∈P(X )

{Eν [f(X)]− L(Tbc(µ, ν))},

where L is a convex penalty function, and Tbc(µ, ν) := infπ∈Πbc(µ,ν)E[c(X,Y )] is the
optimal bi-causal transport cost for a given cost function c. Here, we take infimum
over P(X ), the set of probability measures on the path space X . In this setup, model
uncertainty is captured by penalizing potential models in function of their bi-causal
optimal transport cost to a given reference model µ. By taking L as an indicator
function and an appropriate c, one can easily recover (1.2). The main duality result
states the following:

V = inf
λ≥0

{L∗(λ) + U(λ)},

where L∗ is the convex conjugate of L, and U is a convex function which can be
computed recursively in discrete time, or solved by a path-dependent Hamilton–
Jacobi–Bellman equation in continuous time. We remark that our discrete-time re-
sult retrieves existing Wasserstein DRO duality results (Gao and Kleywegt, 2022,
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Blanchet and Murthy, 2019) as a special case. For the continuous-time case, our
approach adapts the non-Markovian stochastic control framework from Bally et al.
(2016, Chapter 8.3). In Section 4.6, we further extend these duality results from the
worst-case expectation to the worst-case expected shortfall, a non-linear expectation.
We demonstrate the extra risk from model uncertainty for an exotic option. Finally,
in Section 4.7 we apply the AW-DRO framework to optimal stopping problems in
discrete time. We recast the original problem as a classical Wasserstein DRO on a
nested space by introducing a novel relaxation that considers stopping times with
respect to general filtrations. A preliminary version of this chapter appeared in Jiang
(2024).

In Chapter 5, we study AW-DRO via a sensitivity analysis, an approach with
deep roots in mathematical finance. Just as the ‘Greeks’ measure the sensitivity of
derivative prices to model parameters, we aim to compute the sensitivity of our robust
price (1.2) to model uncertainty itself. To this end, we fix p, q > 1 with 1/p+1/q = 1

and introduce a parameterized variant of (1.2) as

V (δ) = sup
ν∈P(X )

{Eν [f(X)]− Lδ(CWp(µ, ν))},

where Lδ(·) = δL(·/δ) and CWp is the p-causal Wasserstein distance. The penalty
strength is controlled through the real-valued parameter δ which, in the special case of
an indicator penalty, is simply the radius of the uncertainty ball. Instead of computing
the exact value of the worst-case expectation, our main results derive the first-order
sensitivity of V (δ) with respect to the penalization parameter, i.e., a non-parametric
‘Greek’ for model uncertainty. In the discrete-time setting, Theorem 5.15 provides
an explicit formula for the sensitivity:

V (δ) = V (0) + δΥ+ o(δ) with Υ = L∗(‖ oDf‖Lq(µ)),

where L∗ is the convex conjugate of L, D is a gradient induced by the metric chosen
on the underlying path space, and o denotes the optional projection. Motivated by
the pricing measures in financial applications, we analyze a variant with martingale
constraints imposed on the underlying model:

VMart(δ) = sup
ν∈M (X )

{Eν [f(X)]− Lδ(AWp(µ, ν))}.

For p = q = 2, as a special case of Theorem 5.18, we derive

VMart(δ) = VMart(0) + δΥMart + o(δ) with ΥMart = L∗(‖ oDf − pDf‖L2(µ)),
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which notably involves both the optional projection o and the predictable projec-
tion p. We then consider different scaling regimes, which allow us to obtain the
continuous-time sensitivities as nontrivial limits of their discrete-time counterparts.
To establish our results we obtain several novel results which are of independent in-
terest. In particular, we introduce a pathwise Malliavin derivative as the natural
limit of the gradient D in continuous time. On the common domain, it coincides with
the classical Malliavin derivative almost surely under the Wiener measure. We also
establish a novel stochastic Fubini theorem for a two-fold forward and Itô integral in
Theorem 5.12. Our results open new avenues to hedge model uncertainty, with the
sensitivity Υ serving as a new tool for risk management. The contents in this chapter
appeared in Jiang and Obłój (2024).
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Chapter 2

Adapted Wasserstein distances

2.1 Basic definitions
We begin with a gentle introduction to the classical Wasserstein distance and basic
notations. Let (X , dX ) be a Polish metric space and P(X ) be the set of Borel
probability measures on X . We take p ≥ 1, and by Pp(X ) we denote the set of
probability measures with finite p-th moment, i.e.,

Pp(X ) :=

{
µ ∈ P(X ) :

∫
X
dX (x, x0)

pµ(dx) <∞
}
, for some x0 ∈ X .

It is clear that Pp(X ) is independent of the choice of x0 as dX is a metric. The
p-Wasserstein distance between µ, ν ∈ Pp(X ) is defined as

Wp(µ, ν) := inf
π∈Π(µ,ν)

(∫
X×X

dX (x1, x2)
pπ(dx1, dx2)

)1/p

,

where Π(µ, ν) is the set of couplings between µ and ν given by

Π(µ, ν) = {π ∈ P(X × X ) : π(· × X ) = µ(·) and π(X × ·) = ν(·)}.

The Wasserstein space (Pp(X ),Wp) can be viewed as a lift of (X , dX ) to the space
of probability measures, and it inherits many topological properties from the base
space. For example, the map x 7→ δx gives an isometric embedding of (X , dX ) into
(Pp(X ),Wp), where δx is the Dirac measure at x ∈ X .

We say a sequence of probability measures µn converges weakly to µ ∈ P(X ) if
for any bounded continuous function f : X → R we have the convergence of

∫
f dµn

to
∫
f dµ. The Wasserstein distance metrizes the weak convergence on Pp(X ).

Proposition 2.1 (Villani (2009), Remark 6.9). Let µn, µ ∈ Pp(X ). Then µn con-
verges to µ in Wp if and only if µn converges to µ in the weak topology and the p-th
moment

∫
X dX (x, x0)

pµn(dx) converges to
∫
X dX (x, x0)

pµ(dx).
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In particular, if dX is bounded, then all p-Wasserstein topologies are equivalent to
the weak topology. The following theorem shows that the Wasserstein space inherits
the Polish property from the underlying metric space.

Theorem 2.2 (Villani (2009), Theorem 6.18). (Pp(X ),Wp) is a Polish metric space,
and in particular, it is complete.

In this thesis we are interested in the probability measures on path spaces which
are interpreted as laws of stochastic processes. We will consider both discrete- and
continuous- time settings. In discrete time, we take time index set I as {0, 1, . . . , N}
and the canonical path space X = X0 × X1 × · · · XN the product of Polish spaces;
in continuous time, we consider I = [0, T ] and X = C([0, T ];RN) the continuous
path space. We equip X with the uniform metric in both cases. Let IdX : X → X
be the identity map on X . It is interpreted as the canonical process and induces a
natural filtration F = (Ft)t∈I given by Ft = σ(IdX (s) : 0 ≤ s ≤ t) which denotes the
information available at time t.

To incorporate the information structure of the underlying space, the Wasserstein
distance is modified using the key concept of a causal coupling. Heuristically, this
is a transport plan that is constrained to move mass without using any information
from the future.

Definition 2.3 (Causal coupling). Let µ, ν ∈ P(X ). We say a coupling π ∈ Π(µ, ν)

is causal if
x1 7→ πx1(Vt) is µFt-measurable

for any Vt ∈ Ft and t ∈ I, where µFt is the completion of Ft under µ and πx1 is
the disintegration kernel given by π(dx1, dx2) = µ(dx1)πx1(dx2). A causal coupling
π is bi-causal if further [(x1, x2) 7→ (x2, x1)]#π is causal. We write the set of causal
(bi-causal) couplings between µ and ν as Πc(µ, ν) (Πbc(µ, ν)).

We give a few examples of (bi-)causal couplings.

1. The product measure π = µ⊗ ν is always a bi-causal coupling.

2. The Knothe–Rosenblatt coupling between discrete-time scalar processes is a
bi-causal coupling (Backhoff-Veraguas et al., 2017, Proposition 5.8).

3. Let T : X → X be a transport map such that T#µ = ν. Then π = (IdX , T )#µ

is a causal coupling if T is non-anticipative, i.e., Tt(x) = Tt(x(· ∧ t)). If further
T is invertible and T−1 is non-anticipative, then π is bi-causal.
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4. Let X(t) =
∫ t

0
{3 − 12(s/t) + 10(s/t)2} dB(s) be Lévy’s non-canonical repre-

sentation of the Brownian motion (Lévy, 1956). The joint law π = Law(B,X)

gives a causal coupling between Wiener measure, but it is not bi-causal (Jiang
and Obłój, 2024, Remark 2.3).

5. Assume that SDE X(t) = x +
∫ t

0
b(X(s)) ds +

∫ t

0
σ(X(s)) dB(s) has a unique

strong solution. The joint law π = Law(B,X) yields a causal coupling as the
solution is given by a non-anticipative Itô map X = F (B). Moreover, this
coupling is actually bi-causal as shown in Cont and Lim (2024, Theorem 3.2).

For here and what follows, we should interpret ‘distance’ in a generalized sense; it
is only a non-negative function d : X ×X → R≥0 ∪ {+∞} vanishing on the diagonal
and satisfying a ‘directional’ triangle inequality

d(x, y) + d(y, z) ≥ d(x, z) for any x, y, z ∈ X .

Definition 2.4 (Adapted Wasserstein distance). Let µ, ν ∈ P(X ) and d a (general-
ized) distance on X . The adapted p-Wasserstein distance between µ and ν is defined
as

AWp(µ, ν) := inf
π∈Πbc(µ,ν)

(∫
X×X

d(x1, x2)
pπ(dx1, dx2)

)1/p

.

Remark 2.5. A related notion appeared in the literature is the causal p-Wasserstein
‘distance’ defined as

CWp(µ, ν) := inf
π∈Πc(µ,ν)

(∫
X×X

d(x1, x2)
pπ(dx1, dx2)

)1/p

,

Unlike the adapted Wasserstein distance, AWp, which is symmetric (assuming the
underlying metric d is), the causal Wasserstein distance CWp is generally not. This
asymmetry comes from the directional nature of the causality constraint. We follow
the convention in the literature and interpret it as a generalized distance.

From the trivial inclusion Πbc(µ, ν) ⊆ Πc(µ, ν), it is clear that the causal Wasser-
stein distance is dominated by the adapted one. Nevertheless, a crucial result in
discrete time shows that the convergence of limn→∞ CWp(µ, µn) = 0 implies the
convergence of limn→∞ AWp(µ, µn) = 0, see for example Backhoff-Veraguas et al.
(2020b), Pammer (2024).

Remark 2.6. In discrete time, d is usually a distance compatible with dX . In con-
tinuous time, the choice of d is more flexible and is often tailored to the specific
application. For example, d is taken as the uniform norm in Bartl et al. (2025a); the
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L2 norm in Bion–Nadal and Talay (2019), Backhoff-Veraguas et al. (2022b) and Chap-
ter 3; Cameron–Martin norm in Lassalle (2018), Acciaio et al. (2020) and Chapter 4;
H2 martingale norm1in Backhoff-Veraguas et al. (2020a) and Chapter 5, etc.

At this point, it is unclear whether the causal/adapted Wasserstein distance satis-
fies the triangle inequality. We continue with the discussion on the adapted Wasser-
stein topology and postpone the proof of triangle inequality to the end of this chapter
where we accommodate the adapted Wasserstein distance in a more general frame-
work of stochastic processes.

2.2 Adapted Wasserstein space
We start with a simple example in discrete time.

Example 2.7. In Figure 2.1, we consider a two-step case with the path space X =

{0}×R×R, and take d as the Euclidean distance. Let µn = 1
2
δ(0,1/n,1)+

1
2
δ(0,−1/n,−1),

and µ = 1
2
δ(0,0,1) +

1
2
δ(0,0,−1), where δx denotes the Dirac measure concentrated at the

path x. An optimal transport map between µ and µn for the classical Wasserstein
distance Wp is given by

Tn(x) =

{
(0, 1/n, 1), x = (0, 0, 1),

(0,−1/n, 1), x = (0, 0,−1).

However, Tn is not a non-anticipative map as at time t = 1 it splits the mass to 1/n

and −1/n based on the future trajectory at time t = 2. Indeed, one can verify that
µn does not converge to µ in AWp.

The example above also demonstrates that Wasserstein distance is too coarse for
dynamic problems. If we consider the optimal stopping problem

OS(µ) := sup
τ∈T

Eµ[Xτ ]

over the set of F-stopping time T , we observe a stark discontinuity: OS(µ) = 0 while
limn→∞ OS(µn) = 1/2. The reason for this discontinuity becomes clear from the Snell
envelope theorem, which gives

OS(µ) = Eµ[max{X0, Eµ[max{X1, Eµ[X2|X1, X2]}|X1]}].
1Strictly speaking, in Jiang and Obłój (2024), Backhoff-Veraguas et al. (2020a) the distance d

is chosen such as d(x1, x2) =
√

[x1 − x2]T π-a.s. holds for any bi-causal coupling π between two
square-integrable martingale measures.
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1/n

μn
1

μ

Figure 2.1: An example of convergence in the Wasserstein distance but not in the
adapted Wasserstein distance.

The value of the optimal stopping problem depends not just on the law of the process,
but on its nested conditional laws.

The challenge of finding a topology under which such stochastic optimization prob-
lems are continuous is not new. A key approach, which we will introduce shortly,
involves encoding the information carried by a process as a distribution on a nested
path space. This leads to the nested distribution and the induced nested weak topol-
ogy studied in Pflug (2010), Pflug and Pichler (2012), Bartl et al. (2024).

Definition 2.8 (Nested space). Let X = X0 ×X1 × · · · × XN . We recursively define
X̂N = XN and

X̂n = X̂−
n × X̂+

n := Xn × P(X̂n+1) for 0 ≤ n ≤ N − 1.

For any x̂n ∈ X̂n, we write it as x̂n = (x̂−n , x̂
+
n ) with x̂−n ∈ Xn and x̂+n ∈ P(X̂n+1). We

say X̂ = X̂0 is the nested space associated to X .

Definition 2.9 (Nested distribution). Let µ ∈ P(X ), and IdX : X → X the canon-
ical process on X . We recursively define ÎdN = IdXN

and Îdn : X → X̂n as

Îdn = (Îd
−
n , Îd

+

n ) := (Idn,Law(Îdn+1|Fn)) for 0 ≤ n ≤ N,

where F = (Fn) is the natural filtration on X . We say µ̂ = Law(Îd0) ∈ P(X̂ ) is the
nested distribution associated to µ. We say µn ∈ P(X ) converges to µ in the nested
weak topology if the corresponding nested distribution µ̂n converges to µ̂n in weak
topology as probability measures on X̂ .

The following result is adapted from Bartl et al. (2024, Theorem 1.3).
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Proposition 2.10. In discrete time, the adapted Wasserstein distance AWp is not
a complete metric on Pp(X ). There exists a Polish metric dX̂ on X̂ such that for
any µ, ν ∈ P(X ), we have AWp(µ, ν) = Wp(µ̂, ν̂), where µ̂ and ν̂ are the nested
distributions associated to µ and ν respectively. Moreover, (Pp(X̂ ),Wp) is isometric
to the completion of (Pp(X ),AWp).

An immediate implication of the above result is an ‘adapted’ version of Proposi-
tion 2.1 which characterizes the convergence in the adapted Wasserstein topology.

Proposition 2.11. Let µn, µ ∈ Pp(µ). Then µn converges to µ in AWp if and only
if µn converges to µ in the nested weak topology and

∫
X d(x, x0)

pµn(dx) converges to∫
X d(x, x0)

pµ(dx).

Proof. From Propositions 2.1 and 2.10, it suffices to show that the convergence of∫
X d(x, x0)

pµn(dx) to
∫
X d(x, x0)

pµ(dx) is equivalent to the convergence of their nested
counterparts

∫
X̂ dX̂ (x̂, x̂0)

pµ̂n(dx̂) to
∫
X̂ dX̂ (x̂, x̂0)

pµ̂(dx̂). Notice the choice of x0 and
x̂0 is arbitrary. We fix an x0 ∈ X and let µ0 = δx0 ∈ P(X ). We observe that the
nested distribution µ̂0 associated to µ0 is again a Dirac measure, and we write it as
δx̂0 ∈ P(X̂ ). It follows from the isometry in Proposition 2.10 that∫

X
d(x, x0)

pµn(dx) = AWp(µn, µ0)
p = Wp(µ̂n, µ̂0)

p =

∫
X̂
dX̂ (x̂, x̂0)

pµ̂n(dx̂).

Therefore, we derive the desired equivalence.

A natural question arises: does the incompleteness of AWp stem merely from the
inadequacy of the natural filtration on the path space X ? For instance, the sequence
µn constructed in Example 2.7 can be made to converge if we equip the Wasserstein
limit µ with an enlarged filtration G = {G0,G1,G2} where G1 already contains the
information from F2. In this case, the filtration at time 1 ‘knows’ the future at
time 2. And the optimal stopping problem with respect to this enlarged filtration G
matches the limit of OS(µn).

The above arguments suggest a potential path to retrieve the completeness: we
only need to consider all possible filtrations on the path space X . However, this is
not the case. In Figure 2.2, we consider νn = 1

4
(δ(0,1/n,1)+δ(0,1/n,−1)+δ(0,0,1)+δ(0,0,−1))

and ν = 1
2
(δ(0,0,1) + δ(0,0,−1)). A direct calculate gives the limit of the corresponding

optimal stopping values is limn→∞ OS(νn) = 1/4.
On the other hand, for any random time τ : X → {0, 1, 2}, Eν [Xτ ] can only take

value in {0, 1/2,−1/2}. Since 1/4 is not in this set, it is impossible to find a stopping
time for ν on X such that recovers the limit of the optimal stopping values. This
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implies that the space X is not sufficient to describe the true adapted Wasserstein
limit of νn.

Heuristically, the formal AWp limit of νn would require external randomness—a
setting akin to a ‘parallel universe’ where in one branch the future is known, and in
the other it is not. One has to enlarge the base space X to accommodate such a
realization.

1

1/n

μn
1

μ

Figure 2.2: Adapted stochastic processes on the canonical path space are incomplete
under the AWp.

Motivated by the above example, we introduce the extension of the adapted
Wasserstein distance to general adapted stochastic processes. From now on, the time
index set I can be either discrete or continuous.

Definition 2.12. We say an adapted stochastic process X is given by a 5-tuple
(ΩX,FX, PX,FX, X) where (ΩX,FX,FX, PX) is a filtered Polish probability space, and
X : ΩX → X is a stochastic process adapted to the filtration FX = (FX

t )t∈I .

For an adapted process X = (ΩX,FX, PX,FX, X), if FX coincides with FX the
natural filtration generated by X, then we say X is a naturally filtered process. With
a slight abuse of notation, we may also use X to refer the 5-tuple of a naturally
filtered process since itself determines the natural filtration. We denote the space of
adapted processes and naturally filtered processes by AP and NP respectively.

The notion of the causality can be naturally carried over to adapted stochastic
processes as follows.

Definition 2.13 (Causal coupling). Let Xi = (ΩXi ,FXi ,FXi , PXi , Xi) be two adapted
stochastic processes for i = 1, 2. We say a coupling π ∈ Π(PX1 , PX2) is causal if

ω1 7→ πω1(Vt) is PX1FX1
t -measurable
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for any Vt ∈ FX2
t and t ∈ I, where πω1 is the disintegration kernel of π with respect to

ΩX1 . A causal coupling π is bi-causal if further [(ω1, ω2) 7→ (ω2, ω1)]#π is causal. With
a slight abuse of notation, we write the set of causal (bi-causal) couplings between
X1 and X2 as Πc(X1,X2) (Πbc(X1,X2)).

Definition 2.14 (Adapted Wasserstein distance). Let Xi = (ΩXi ,FXi ,FXi , PXi , Xi)

be two adapted stochastic processes for i = 1, 2. The adapted Wasserstein distance
between X1 and X2 is defined as

AWp(X1,X2) := inf
π∈Πbc(X1,X2)

Eπ[d(X1, X2)
p]1/p. (2.1)

In the same fashion, we define the causal Wasserstein distance CWp(X1,X2) by re-
placing the bi-causal coupling Πbc(X1,X2) with the causal coupling Πc(X1,X2).

Remark 2.15. The recent work of Bartl et al. (2025a) pointed out that the above
definition is too strong in a continuous-time context. Indeed, the induced topology is
strictly stronger than the initial topology of optimal stopping problems, and Donsker’s
theorem does not hold in the adapted Wasserstein topology. A relaxed version of
(2.1) is proposed such that all adapted topologies are equivalent in a continuous-time
setting. Nevertheless, the current definition enjoys better analytic properties and
provide a uniform framework for both discrete time and continuous time.

Remark 2.16. The above definitions are consistent with the definitions introduced in
Section 2.1 by viewing the 5-tuple (X ,F ,F, µ, IdX ) as an adapted stochastic process
on the canonical path space.

2.3 Gluing and shadowing
We first present an equivalent characterization of the causality.

Proposition 2.17. Let Xi = (ΩXi ,FXi ,FXi , PXi , Xi) be two adapted stochastic pro-
cesses for i = 1, 2. For a coupling π ∈ Π(PX1 , PX2) the following statements are
equivalent:

(i) π ∈ Πc(X1,X2).

(ii) {∅,ΩX1} ⊗ FX2
t is conditionally independent of FX1

T ⊗ {∅,ΩX1} under π given
FX1

t ⊗ {∅,ΩX1} for any t ∈ I.
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Proof. We notice that π ∈ Πc(X1,X2) is equivalent to the PX1FX1
t -measurability of

the map
ω1 7→ πω1(Bt) = Eπ[1Bt(ω2)|FX1

T ⊗ {∅,ΩX2}](ω1)

for any Bt ∈ FX2
t and t ∈ I. This is further equivalent to the identity

Eπ[1Bt(ω2)|FX1
T ⊗ {∅,ΩX2}](ω1) = Eπ[1Bt(ω2)|FX1

t ⊗ {∅,ΩX2}](ω1)

for any Bt ∈ FX2
t and t ∈ I. By the tower property of the condition expectation, we

derive the equivalence between (i) and (ii).

We introduce the gluing between two coupling measures.

Definition 2.18 (Gluing). Let µ, ν, η be three probability measures on Polish spaces
X , Y , and Z respectively. For any π1 ∈ Π(µ, ν) and π2 ∈ Π(ν, η), their gluing is
defined as π3(dx, dz) := ϖ(dx,Y , dz) where ϖ ∈ P(X × Y × Z) is given by

ϖ(dx, dy, dz) := π1,y(dx)π2,y(dz)ν(dy).

In particular, we have π3 := ϖ|(X×Z) ∈ Π(µ, η).

Proposition 2.19 (Pammer (2024), Corollary 2.12). Let Xi = (ΩXi ,FXi ,FXi , PXi , Xi)

be three adapted stochastic processes for i = 1, 2, 3. If π1 ∈ Πc(X1,X2) and π2 ∈
Πc(X2,X3), then their gluing π3 ∈ Πc(X1,X3).

Proof. Notice that we have

ϖ(dω1, dω2, dω3) = π2,ω2(dω3)π1(dω1, dω2) = π2,ω2(dω3)π1,ω1(dω2)µ(dω1).

This yields the disintegration kernel of π3 with respect to ΩX1 as

π3,ω1(dω3) =

∫
ΩX2

π2,ω2(dω3)π1,ω1(dω2).

As π1 ∈ Πc(X1,X2) and π2 ∈ Πc(X2,X3), we obtain for any Wt ∈ FX3
t

ω1 7→ π3,ω1(Wt) is PX1FX1
t -measurable.

Therefore, we derive π3 ∈ Πc(X1,X3).

Corollary 2.20. Both the causal and the adapted p-Wasserstein distance satisfy
the ‘directional’ triangle inequality. Moreover, if d is symmetric than AWp is also
symmetric.
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Proof. It follows directly from Proposition 2.19 and the triangle inequality of d.

Definition 2.21 (Shadowing). Let µ, ν, µ′, ν ′ be probability measures on Polish spaces
X , Y , X ′, and Y ′ respectively. For any π ∈ Π(µ, ν), γ1 ∈ Π(µ′, µ), γ2 ∈ Π(ν, ν ′), we
say the shadowing of π under (γ1, γ2) is given by

π′(dx′, dy′) :=
∫
X×Y

γ1,x(dx′)γ2,y(dy′)π(dx, dy).

Proposition 2.22 (Eckstein and Pammer (2024), Lemma 3.4). Let X1,X2,X′
1,X′

2 be
four adapted processes. Assume π ∈ Πc(X1,X2), γ1 ∈ Πc(X′

1,X1), and γ2 ∈ Πc(X2,X′
2).

Then the shadowing of π under (γ1, γ2) is a causal coupling between X′
1 and X′

2.

We summarize Propositions 2.19 and 2.22 in the commutative diagram 2.3 below.

X1

X2

X3

π1 π2

π3

(a) Gluing.

X1

X′
1

X2

X′
2

π

γ1 γ2

π′

(b) Shadowing.

Figure 2.3: Gluing and shadowing of causal couplings. The arrows represent the
direction of the causality.

The following proposition establishes the equivalence between two classical view-
points in stochastic analysis for naturally filtered processes. The first perspective
considers various stochastic processes on an abstract probability space, while the sec-
ond, or canonical, perspective considers various probability measures on the fixed
space of all possible sample paths.

Proposition 2.23. Let µ, ν ∈ Pp(X ) and Xi = (ΩXi ,FXi ,FXi , PXi , Xi) be two natu-
rally filtered processes with (X1)#P

X1 = µ and (X2)#P
X2 = ν. Then we have

AWp(µ, ν) = AWp(X1,X2).

In particular, if X1 and X2 have the same law, then AWp(X1,X2) = 0.

Proof. Let γ1 = (IdΩX1 , X1)#P
X1 and γ2 = (X2, IdΩX2 )#P

X2 . Notice that we have
X1 = IdX γ1-a.s., where we naturally lift both processes to the product probability
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space ΩX1×X . This implies that X1 and IdX generate the same γ1-completed natural
filtration, i.e., γ1({∅,ΩX1} ⊗ Ft) = γ1(FX1

t ⊗ {∅,X}). By Proposition 2.17 (ii), we
deduce that γ1 is a bi-causal coupling. Similarly, we have γ2 is a bi-causal coupling.

By Proposition 2.22 for any bi-causal coupling π ∈ Πbc(X1,X2) its shadowing
under (γ1, γ2) gives a bi-causal coupling π′ ∈ Πbc(µ, ν), and vice versa. Moreover, it
satisfies that (X1, X2)#π = π′. Therefore, we deduce AWp(µ, ν) = AWp(X1,X2).
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Chapter 3

A transfer principle for computing
adapted Wasserstein distances

3.1 Introduction
Stochastic processes, the building block of stochastic analysis, can be viewed as path-
valued random variables. From this perspective, the convergence of stochastic pro-
cesses can naturally be induced by the weak convergence of their laws as probability
measures on the path space. However, this ‘static’ viewpoint turns out to be insuf-
ficient for ‘dynamic’ problems, especially for many key applications in mathematical
finance and beyond. In particular, the value of a stochastic optimal stopping prob-
lem is not continuous with respect to this weak topology (Backhoff-Veraguas et al.,
2020a, 2022b). Different notions of adapted topologies have been proposed to refine
the weak topology. We focus on the adapted Wasserstein distance which was first
introduced in Lassalle (2018) as a dynamic counterpart of the Wasserstein distance
for stochastic processes. We fix a Polish probability space (Ω,F , P ) throughout this
chapter. Recall Definition 2.14 and the discussion above, for two naturally filtered
stochastic processes X1 and X2 on (Ω,F , P ), their adapted 2-Wasserstein distance is
given by

AW2(X1, X2) := inf
π∈Πbc(X1,X2)

Eπ[d(X1, X2)
2]1/2, (3.1)

where we will take d as the L2 distance on the path space throughout this chapter, and
Πbc(X1, X2) is the set of bi-causal couplings betweenX1 andX2. It has been applied to
the analysis of various aspects of robust finance such as stability (Backhoff-Veraguas
et al., 2020a), sensitivity (Bartl and Wiesel, 2023, Mirmominov and Wiesel, 2024),
and model risk (Han, 2025, Sauldubois and Touzi, 2024). However, computing the
adapted Wasserstein distance analytically, or even numerically, is difficult, due to the
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additional causality constraint. Even in discrete time, few explicit formulas have been
obtained for the adapted Wasserstein distance, see Gunasingam and Wong (2025),
Acciaio et al. (2024), Backhoff-Veraguas et al. (2017), etc. In continuous time, to the
best of our knowledge, there has been little to no results beyond the semi-martingale
framework, see Lassalle (2018), Bion–Nadal and Talay (2019), Backhoff-Veraguas
et al. (2022b), etc.

In this chapter, we leverage a simple yet effective transfer principle to compute the
explicit adapted Wasserstein distance between Gaussian processes and identify the
optimal coupling between fractional stochastic differential equations. Let Xi, Yi be
natural filtered stochastic processes for i = 1, 2. Given a transport map Ti such that
Xi = Ti(Yi) and Xi, Yi generate the same natural filtration, it immediately follows
from Definition 2.13 that Πbc(X1, X2) = Πbc(Y1, Y2) and

AW2(X1, X2) = inf
Πbc(Y1,Y2)

Eπ[d(T1(Y1), T2(Y2))
2]1/2. (3.2)

This principle transfers the original transport problem from X1 and X2 to Y1 and
Y2 which could have a much simpler structure. In particular, if Y1 and Y2 have
independent marginals, then under any bi-causal coupling, one can verify

Y1(t) is independent of Y2(s) for distinct s, t ∈ I. (3.3)

In Backhoff-Veraguas et al. (2022b), this principle has been already applied to transfer
bi-causal couplings between SDEs to bi-causal couplings between Brownian motions.
To illustrate the idea, we consider a simpler example of discrete-time Gaussian pro-
cesses from Gunasingam and Wong (2025). Let Xi ∼ N (0,Σi) be an N -step 1D
non-degenerate Gaussian process. We construct Xi = KiYi where Ki is the Cholesky
decomposition of Σi and Yi ∼ N (0, IdN) is a standard Gaussian. Indeed, Xi and
Yi generate the same natural filtration as Ki is lower triangular and invertible. By
applying the transfer principle and (3.3), we can calculate AW2(X1, X2) as

AW2(X1, X2)
2 = tr(Σ1 + Σ2)− 2 sup

π∈Πbc(X1,X2)

Eπ[〈X1, X2〉]

= tr(Σ1 + Σ2)− 2 sup
π∈Πbc(Y1,Y2)

Eπ[〈K1Y1, K2Y2〉]

= tr(Σ1 + Σ2)− 2 sup
π∈Πbc(Y1,Y2)

N∑
n=1

(K∗
1K2)n,nEπ[Y1(n)Y2(n)].

This gives AW2(X1, X2)
2 = tr(Σ1+Σ2)−2

∑N
n=1 |(K∗

1K2)n,n| as choosing Eπ[Y1(n)Y2(n)]

to match the sign of the diagonal element (K∗
1K2)n,n attains the supremum. Heuris-

tically, we can view Yi as a ‘nicer’ coordinate system which leads to a ‘nicer’ param-
eterization of the set of bi-causal couplings, and hence simplifies the computation.
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Our first main result extends the above example to a continuous-time setting and
computes the adapted Wasserstein distance between mean-square continuous Gaus-
sian processes. To apply the transfer principle, in Section 3.3, we introduce a notion
of ‘canonical causal factorization’ as an infinite-dimensional analogue of the Cholesky
decomposition for operators on Hilbert spaces. This notion naturally bridges an
algebraic object ‘nest algebra’ (Davidson, 1988) and a probabilistic object ‘canoni-
cal representation’ (Hida, 1960) of Gaussian processes. Our results give an explicit
formula of the adapted Wasserstein distance in terms of the canonical causal factor-
ization of the covariance operator, or equivalently, of the canonical representation of
the Gaussian process, see Theorem 3.18. For example, any fractional Brownian mo-
tion BH has a Molchan–Golosov representation given by BH(t) =

∫ t

0
kH(t, s) dB(s),

where H ∈ (0, 1) is the Hurst parameter, kH is the Molchan–Golosov kernel (Molchan
and Golosov, 1969, Decreusefond and Üstünel, 1999)

kH(t, s) = Γ(H + 1/2)−1(t− s)H−1/2F (H − 1/2, 1/2−H,H + 1/2, 1− t/s)1{s≤t},

F (a, b, c, z) is the Gaussian hypergeometric function F (a, b, c, z) =
∑∞

n=0
(a)n(b)n

(c)n
zn

n!
,

and (x)n = Γ(x + n)/Γ(x) is the Pochhammer symbol. We have the following result
as a direct application of Theorem 3.18.

Theorem 3.1. Let BHi
be the fractional Brownian motion with Hurst parameter

Hi ∈ (0, 1). Then the adapted 2-Wasserstein distance between BH1 and BH2 is given
by

AW2(BH1 , BH2)
2 =

∫ T

0

∫ T

0

(kH1(t, s)− kH2(t, s))
2 dt ds.

Moreover, the optimal coupling is given by the synchronous coupling between BH1 and
BH2, i.e., they are driven by the same Brownian motion in their Molchan–Golosov
representations.

Our second result considers the adapted Wasserstein distances between fractional
stochastic differential equations. By applying the transfer principle, we reformulate
the adapted Wasserstein distance as a stochastic optimal control problem of fractional
SDEs. The control only appears as the correlation between the driving noises. We
show the optimality of the synchronous coupling by adapting the path-dependent HJB
equation framework from Viens and Zhang (2019), see Theorem 3.34. In particular,
for SDEs driven by fractional Brownian motions, we have the following result.
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Theorem 3.2. Let Xi be the solution of the following fractional SDE

Xi(t) = xi +

∫ t

0

bi(Xi(s)) ds+
∫ t

0

σi(Xi(s)) dBHi
(s),

where BHi
is the fractional Brownian motion with Hurst parameter Hi ∈ (1/2, 1).

We assume that bi, σi ∈ C2 with bounded first and second derivatives, and b′′i , σ
′′
i are

uniformly continuous. Moreover, σi is positive, bounded, and bounded away from zero.
Then, AW2(X1, X2) is attained by the synchronous coupling between BH1 and BH2.

Admittedly, the regularity constraint in the above result is not optimal, as is
often the case in classical stochastic control theory, where strong assumptions are
imposed to ensure the verification theorem. In a forthcoming work, we aim to relax
the regularity constraint through a time-discretization approximation in the spirit of
Backhoff-Veraguas et al. (2022b) and extend results to stochastic Volterra equations
with monotone kernels.

To the best of our knowledge, this is the first work to investigate the adapted
Wasserstein distance between fractional processes. We stress that these processes
are neither semi-martingales nor Markovian, which precludes a direct application of
techniques from the existing literature. Their ability to capture long-range depen-
dence and rough path behavior has led to impactful applications, notably in finance
(Baillie, 1996, Rogers, 1997, Cont, 2005), in physics (Metzler and Klafter, 2000), in
engineering (Lévy-Véhel et al., 2005), and filtering theory (Decreusefond and Üstünel,
1998).

3.1.1 Related literature

We review the existing literature on the computation of adapted Wasserstein dis-
tances. For broader literature related causal optimal transport problems, we refer
readers to Backhoff-Veraguas et al. (2020b), Bartl et al. (2024, 2025a) and references
therein. In discrete time, Gunasingam and Wong (2025) computed explicitly the
adapted Wasserstein distance between two 1D Gaussian processes. More recently,
Acciaio et al. (2024) extended the previous result to multi-dimensional Gaussian pro-
cesses and also considered an entropic regularization. Both of these results leveraged
a dynamic programming principle from Backhoff-Veraguas et al. (2017), which is dis-
tinct from the transfer principle considered in this work. Instead of computing the
explicit formula of the adapted Wasserstein distance, the Knothe–Rosenblatt coupling
is identified as the optimal coupling between co-monotone distributions in discrete
time (Rüschendorf, 1985, Backhoff-Veraguas et al., 2017). In continuous time, it is
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shown in Lassalle (2018), for a Cameron–Martin cost, the adapted Wasserstein dis-
tance between an arbitrary probability measure and the Wiener measure is equal
to the square-root of its relative entropy with respect to the Wiener measure. For
L2 cost, it is shown in Bion–Nadal and Talay (2019) and later in Backhoff-Veraguas
et al. (2022b), Robinson and Szölgyenyi (2024) that the synchronous coupling is the
optimal coupling between two 1D SDEs.

Another line of research is to numerically compute the adapted Wasserstein dis-
tance by approximation or regularization. These results are mainly in a discrete-time
setting. For instance, Eckstein and Pammer (2024) proposed numerical algorithms to
compute the entropic regularized adapted Wasserstein distance. In Pflug and Pichler
(2016), Backhoff-Veraguas et al. (2022a), Acciaio and Hou (2024), the authors studied
various smoothed adapted empirical measures and derived the convergence rate to
their limit under the adapted Wasserstein distance.

The notion of causality underpinning the adapted Wasserstein distance, when
placed in the context of linear transformations between (finite-dimensional) vector
spaces, naturally corresponds to the triangularity of these transformations. A suitable
generalization of these triangular forms to Hilbert spaces is the nest algebra, which
originates from the work of Ringrose (1965). The nest algebra is a prime example of
non-selfadjoint algebras and reflexive algebras in the sense of Arveson (1974). Early
research focused on the structure of compact operators in nest algebras, see Ringrose
(1962), Erdos (1968), etc. Further developments include the characterization of the
radical (Ringrose, 1965), unitary invariants (Erdos, 1967), and similarity invariants
(Larson, 1985). The causal factorization introduced in Section 3.3 is motivated by
several pioneering works (Pitts, 1988, Anoussis and Katsoulis, 1997, 1998). We refer
interested readers to Davidson (1988) for a more complete reference.

In order to study the prediction theory of Gaussian processes, Lévy (1956) in-
troduced the canonical representation of a Gaussian process, which provides a full
description of its natural filtration. This canonical representation and the related
notion of multiplicity was systematically investigated in Hida (1960), Hida and Hit-
suda (1993), Hitsuda (1968) and extended by Cramér (1971) to general stochastic
processes. In the sequel, we clarify the connection between the canonical representa-
tion of Gaussian processes and the (canonical) causal factorization of their covariance
operators.
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3.1.2 Outline

The rest of the chapter is organized as follows. In Section 3.2, we recall basic defi-
nitions and properties of the adapted Wasserstein distance and the canonical repre-
sentation of Gaussian processes. In Section 3.3, we introduce the (canonical) causal
factorization and discuss its existence and uniqueness. A characterization of the
Gaussian Volterra processes is given in Corollary 3.10 which we believe is of indepen-
dent interest. In Section 3.4, we apply the transfer principle to compute the adapted
2-Wasserstein distance between Gaussian processes. An explicit formula for the dis-
tance is given in Theorems 3.18 and 3.25 for the unit multiplicity case and the higher
multiplicity case respectively. An optimal coupling is identified in both cases. In
Theorem 3.29, we consider the best martingale approximation to a fractional Brow-
nian motion with respect to the adapted 2-Wasserstein distance. In Section 3.5, we
study the adapted Wasserstein distance between fractional SDEs via a stochastic con-
trol reformulation. We establish a verification theorem for additive fractional SDEs
and reduce the multiplicative case into the additive case via a Lamperti transform
(Lamperti, 1964). Some technical estimates are postponed to Section 3.6.

3.2 Preliminaries
3.2.1 Notations

Let µ, µ1, µ2 be positive measures on [0, T ]. We write Hµ = L2([0, T ], µ;R) and 〈·, ·〉µ
as the inner product on Hµ with the induced norm ‖ · ‖µ. We write Hµ,t = {f ∈ Hµ :

supp(f) ⊆ [0, t]} as a closed subspace of Hµ. We equip Hµ with the Borel σ-algebra
B(Hµ) and its natural filtration Hµ = (Hµ,t)t∈[0,T ], where Hµ,t := σ(f ∈ Hµ,t). Here,
we identify Hµ,t with its dual H∗

µ,t. By B(Hµ1 , Hµ2) we denote the set of bounded
linear operator A : Hµ1 → Hµ2 , and we write B(Hµ) = B(Hµ, Hµ). Given a closed
subspace N ⊆ Hµ, we denote the orthogonal projection onto N by PN . Let S be a
subset of a normed linear space. By span(S), we denote the closure of the linear span
of S.

We say an operator A ∈ B(Hµ) is positive if 〈Af, f〉µ ≥ 0 for any f ∈ Hµ. We
say an operator A ∈ B(Hµ) is trace-class, if ‖A‖tr :=

∑
k≥1〈|A|ek, ek〉µ is finite for an

orthonormal basis (ek)k≥1 of Hµ. An operator K : Hµ1 → Hµ2 is Hilbert–Schmidt, if
KK∗ is trace-class where K∗ is the dual operator of K. Its Hilbert–Schmidt norm
is defined as ‖K‖HS =

√
tr(KK∗). We denote the set of Hilbert–Schmidt operators

from Hµ1 to Hµ2 by B2(Hµ1 , Hµ2). There exists an isometry from B2(Hµ1 , Hµ2)
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to L2([0, T ]2, µ1 ⊗ µ2;R). In fact, every Hilbert–Schmidt operator K has a kernel
k ∈ L2([0, T ]2, µ1 ⊗ µ2;R) such that Kf(t) =

∫ T

0
k(t, s)f(s)µ1(ds) ∈ Hµ2 . We omit

the subscript if µ = λ the Lebesgue measure on [0, T ].
By µ1 � µ2 we denote µ2 is absolutely continuous with respect to µ1 and write

their Radon–Nikodym derivative as dµ2

dµ1
. We denote the geometric mean of µ1 and µ2

by
√
µ1µ2(dt) :=

√
dµ1

d(µ1 + µ2)

dµ2

d(µ1 + µ2)
(t)(µ1 + µ2)(dt).

Let C([0, T ];R) be the continuous path space. For a functional f on C([0, T ];R),
we say f is Fréchet differentiable at ω ∈ C([0, T ];R) if there exists a linear functional
∂ωf(ω) ∈ C([0, T ];R)∗ such that for any η ∈ C([0, T ];R) it holds

f(ω + η)− f(ω) = 〈η, ∂ωf(ω)〉+ o(‖η‖).

We call ∂ωf the Fréchet derivative of f . Similarly, we define the second Fréchet
derivative of f and denote it as ∂2ωf . Given two linear functionals f, g ∈ C([0, T ];R)∗,
we denote their tensor product as a bilinear functional given by

〈(η1, η2), f ⊗ g〉 = 〈η1, f〉〈η2, g〉,

for any η1, η2 ∈ C([0, T ];R).

3.2.2 Canonical representation of Gaussian processes

We say X : Ω× [0, T ] → R is a 1D Gaussian process if for any t1, . . . , tn ∈ [0, T ], the
random vector (X(t1), . . . , X(tn)) is Gaussian. In this chapter, we focus on centered
and mean-square continuous Gaussian processes, i.e.,

E[X(t)] = 0 for any t ∈ [0, T ], and t 7→ X(t) ∈ L2(Ω, P ) is continuous.

Notice that mean-square continuity of X implies X has path in H = L2([0, T ], λ;R)
almost surely. Hence, X#P yields a Gaussian measure on H whose covariance oper-
ator Σ : H → H is given by 〈Σf, g〉 := E[〈f,X〉〈g,X〉]. Moreover, Σ has a unique
continuous kernel R(t, s) = E[X(t)X(s)] such that

Σf(t) =

∫ T

0

f(s)R(t, s) ds.

We say a Gaussian process X is deterministic if the behavior of X is completely
determined by its behavior in an infinitesimal time, i.e.,⋂

t>0

span{X(s) : s ∈ [0, t]} = span{X(s) : s ∈ [0, T ]} ⊆ L2(Ω, P );
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and X is purely nondeterministic if the information of X must have entered as a new
impulse at some definite time in the past, i.e.,⋂

t>0

span{X(s) : s ∈ [0, t]} = {0}. (3.4)

We shall not confuse a deterministic Gaussian process with a deterministic path-
valued random variable which is supported on a single path. For example, X(t) = tξ

where ξ ∼ N (0, 1) is a deterministic Gaussian process but not a deterministic random
variable. We remark that in Corollary 3.10, we show that (3.4) is equivalent to the
condition that FX

0+ =
⋂

t>0 FX
t is trivial.

In what follows, we introduce the canonical representation of a Gaussian process
which was initiated by Lévy (1956), and systematically studied by Hida (1960) and
Cramér (1971). It states that a centered, mean-square continuous, and purely non-
deterministic Gaussian process is essentially driven by a countable number of ‘noises’.
Such a representation is canonical in the sense that the ‘noises’ precisely generate
the same natural filtration as the one of the Gaussian process. We adapt Hida and
Hitsuda (1993, Theorem 4.1) to our setting.

Theorem 3.3. Let X be a centered, mean-square continuous, and purely nondeter-
ministic Gaussian process. Then there exists N ∈ N∪{∞} uniquely determined by X
called the multiplicity of X, such that X has a canonical representation in the form
of

X(t) =
N∑

n=1

∫ t

0

kn(t, s) dMn(s), (3.5)

satisfying the following conditions:

(i) {Mn}Nn=1 are independent Gaussian martingales with independent increments,

(ii) µn(t) := [Mn](t) is continuous, non-decreasing, and µ1(dt) � µ2(dt) � · · ·,

(iii) t 7→ kn(t, ·) ∈ Hµn is continuous and supp(kn(t, ·)) ⊆ [0, t],

(iv) FX = FM with M = (M1, . . . ,MN).

In general, it is not easy to find the canonical representation of a Gaussian process.
The following result from Hida and Hitsuda (1993, Theorem 4.4) gives a characteri-
zation of the canonical representation.
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Theorem 3.4. Let X be a Gaussian process with a representation of the form of
(3.5). Then it is a canonical representation if and only if for any T ′ ∈ [0, T ] and
fn ∈ Hµn,

g(t) =
N∑

n=1

∫ t

0

kn(t, s)fn(s)µn(ds) = 0 for all t ∈ [0, T ′]

implies fn = 0 on [0, T ′] for all n.

3.3 Causal factorization
In this section, we introduce the causal factorization as an analogue of Cholesky
decomposition for positive operators on infinite dimensional Hilbert space. We first
recall some basic properties of Cholesky decomposition. For any positive definite
matrix A ∈ RN×N , there exists a lower triangular matrix L such that A = LL∗. If
A is nondegenerate, such a decomposition L is unique up to a multiplication by a
diagonal matrix D with diagonal entries being {1,−1}.

It is clear that lower triangularity is not an intrinsic property, but depends
on the choice of the basis. From a geometric viewpoint, let V = RN and Vn =

span{e1, . . . , en}, where e = {en}Nn=1 is an orthonormal basis of V . A map A : V → V

is lower triangular (with respect to e) if and only if V ⊥
n is invariant under A for any

1 ≤ n ≤ N .
We focus on the covariance operator Σ associated to a centered, mean-square

continuous, and purely nondeterministic Gaussian process X, and denote the set of
such operators as C(H). Notice C(H) is a proper subset of positive trace operators
on H with continuous kernel.

Definition 3.5. Let Σ ∈ C(H). For a positive continuous measure µ on [0, T ] and
Hilbert–Schmidt operator K : Hµ → H, we say (K,µ) is a causal factorization of Σ if
Σ = KK∗ and K is causal in the sense that K : (Hµ,Hµ,t) → (H,Ht) is measurable
for any t ∈ [0, T ]. We say (K,µ) is a canonical causal factorization if further Kt is
injective for any t ∈ [0, T ], where Kt := PHtK|Hµ,t .

The following property justifies the causality condition as a natural extension to
the lower traingularity in continuous time context.

Proposition 3.6. Let K : (Hµ,Hµ) → (H,H) be a bounded linear operator. Then K

is causal if and only if K maps H⊥
µ,t into H⊥

t for any t ∈ [0, T ].
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Proof. Let us first assume that K is causal. For h ∈ Ht, we write K∗(h) = f + g,
where f ∈ H⊥

µ,t and g ∈ Hµ,t. We notice that from the causality of K

K−1({x ∈ H : 〈h, x〉 ≤ 0}) = {x ∈ Hµ : 〈h,K(x)〉 ≤ 0}

= {x ∈ Hµ : 〈f + g, x〉µ ≤ 0} ∈ Hµ,t.

Since Hµ,t = σ({h ∈ Hµ : supp(h) ⊆ [0, t]}), we derive H⊥
µ,t ⊆ U for any U ∈ Hµ,t.

In particular, H⊥
µ,t ⊆ {x ∈ Hµ : 〈f + g, x〉µ ≤ 0} and hence f = 0. Therefore,

PH⊥
µ,t
K∗PHt = 0. Taking the adjoint on both sides, we deduce PHtKPH⊥

µ,t
= 0, i.e., K

maps H⊥
µ,t into H⊥

t .
On the other hand, if H⊥

µ,t is mapped into Ht under K for any t ∈ [0, T ], then H⊥
t

is mapped into Hµ,t under K∗. For any h ∈ H⊥
t and r ∈ R, we have

K−1({x ∈ H : 〈h, x〉 ≤ r}) = {x ∈ Hµ : 〈h,K(x)〉µ ≤ r} = {x ∈ Hµ : 〈K∗(h), x〉µ ≤ r}.

The causality follows directly from the fact that K∗(h) ∈ Hµ,t.

Remark 3.7. When µ = λ, the set of operators K : Hµ → Hµ which leaves H⊥
µ,t

invariant forms a non-selfadjoint algebra. This algebra is called the nest algebra first
introduced in Ringrose (1965), and we denote it as N(Hµ). The diagonal algebra
D(Hµ) is a subalgebra of N(Hµ) consisting of operators K such that both K and K∗

are in N(Hµ). See Davidson (1988) for a detailed reference.

3.3.1 Existence

We investigate the existence of causal factorization. Similar to Cholesky decompo-
sition, it does exist for any Σ ∈ C(H). The proof is based on a factorization result
(Anoussis and Katsoulis, 1998, Theorem 13) in nest algebra.

Proposition 3.8. Let µ be a positive continuous measure, and Rµ = {range(A) :

A ∈ N(Hµ)}. For any A ∈ B(Hµ), there exists B ∈ N(Hµ) such that AA∗ = BB∗ if
and only if range(A) ∈ Rµ.

Theorem 3.9. Let Σ ∈ C(H). Then there exists a causal factorization (K,µ) of Σ.

Proof. Let X be a centered, mean-square continuous, and purely nondeterministic
Gaussian process associated to Σ. By Theorem 3.3, we have a canonical representation
of X given by

X(t) =
N∑

n=1

∫ t

0

kn(t, s) dMn(s). (3.6)
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Recall we write µn(dt) = [Mn](dt), and µ1 � µ2 � · · ·. Let µ = λ + µ1. Since
Σ ∈ C(H), we notice Σ uniquely determines a continuous kernel given by R(t, s) =

E[X(t)X(s)]. Hence, it uniquely induces an operator Σµ : Hµ → Hµ given by

Σµf(t) =

∫ T

0

f(s)R(t, s)µ(ds).

The representation (3.6) yields a representation of Σµ as Σµ =
∑N

n=1K
n(Kn)∗, where

Kn : Hµ → Hµ is given by

Knf(t) =

∫ t

0

kn(t, s)

√
dµn

dµ (s)f(s)µ(ds).

In particular, Kn ∈ N(Hµ). If the multiplicity N was finite, then we could apply
Anoussis and Katsoulis (1998, Proposition 27) which states the sum of two factorizable
operators can still be factored in the nest algebra. This would give us a Kµ ∈ N(Hµ)

such that Σµ = Kµ(Kµ)
∗. We could construct K : Hµ → H as

Kf(t) =

∫ t

0

kµ(t, s)

√
dλ
dµ(s)f(s)µ(ds),

where kµ is the kernel of Kµ. Then it is direct to verify (K,µ) would be a causal
factorization of Σ.

Now, we proceed with the case N = ∞. The spirit of the proof aligns with
Anoussis and Katsoulis (1998, Proposition 27), but we extend it to a countable sum
of operators. By Proposition 3.8, it suffices to show range(Σ1/2

µ ) ∈ Rµ. We define
T :
⊕∞

n=1Hµ →
⊕∞

n=1Hµ as

T (f1, f2, . . . ) =

(
∞∑
n=1

Knfn, 0, . . .

)
.

Notice that T is a bounded linear operator and range(T ) = range((TT ∗)1/2) by Dou-
glas (1966, Theorem 1). This yields range(Σ1/2

µ ) =
∑∞

n=1 range(Kn). We construct a
sequence of partial isometries {Un}∞n=1 in N(Hµ) with full range and mutually orthog-
onal initial spaces. Let en ∈ Hµ with supp(en) ∈ [ 1

n+1
, 1
n
]. We take {In,m}∞n,m=1 where

In,m are infinite and mutually disjoint subsets of Z+. We define closed subspaces of Hµ

by En,m := span{ek : k ∈ In,m, k > m} and Fm := {f ∈ Hµ : supp(f) ⊆ [ 1
m+1

, 1
m
]}. In

particular, En,m are mutually orthogonal. Since En,m is infinite dimensional, we can
find a partial isometry Pn,m ∈ N(Hµ) with initial space En,m and range Fm. By tak-
ing Un =

∑∞
m=1 Pn,m, we have Un ∈ N(Hµ) with full range and mutually orthogonal

initial spaces. Therefore,
∑∞

n=1 range(Kn) = range(
∑∞

n=1K
nUn) ∈ Rµ. We conclude

the proof by applying Proposition 3.8 and notice range(Σ1/2
µ ) ∈ Rµ.
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We say a process X is Gaussian Volterra if there exists a Volterra representation
X(t) =

∫ t

0
k(t, s) dM(s) with M a continuous Gaussian martingale with independent

increments. The above result gives a characterization of mean-square continuous
Gaussian Volterra processes.

Corollary 3.10. Let X be a centered, mean-square continuous Gaussian process.
The following statements are equivalent:

(i) FX
0+ =

⋂
t>0 FX

t is trivial.

(ii) X is purely nondeterministic.

(iii) There exists a Gaussian Volterra process X̃ such that X and X̃ share the same
law.

Proof. (i) ⇒ (ii). Notice that span{X(s) : s ≤ t} ⊆ FX
t . Therefore, FX

0+ is trivial
implies that

⋂
t>0 span{X(s) : s ≤ t} = {0}, and hence X is purely nondeterministic.

(ii) ⇒ (iii). If X is purely nondeterministic, by Theorem 3.9 there exists a causal
factorization (K,µ) of Σ, the covariance operator of X. We can take a Gaussian
Volterra process X̃(t) =

∫ t

0
k(t, s) dM(s), where k is the kernel of K, and M is a

Gaussian martingale with independent increments and µ(dt) = [M ](dt). It is clear
that X̃ has the same covariance operator as X, and hence they share the same law.

(iii) ⇒ (i). X̃(t) =
∫ t

0
k(t, s) dM(s) is a Gaussian Volterra process and shares the

same law as X. In particular, M is continuous Gaussian martingale with independent
increments, and it is a deterministic continuous time change of the standard Brownian
motion. Therefore, F X̃

0+ ⊆ FM
0+ is trivial, and so as FX

0+.

On the other hand, a canonical causal factorization does not always exist. In
particular, the following result links the canonical causal factorization to Gaussian
processes with unit multiplicity.

Theorem 3.11. Let Σ ∈ C(H) and be associated to a Gaussian process X. The
following statements are equivalent:

(i) X is of unit multiplicity and has a canonical representation X(t) =
∫ t

0
k(t, s) dM(s).

(ii) Σ has a canonical causal factorization (K,µ).

(iii) Σ has a causal factorization (K,µ) such that the span of {k(r, ·) : r ∈ [0, t]} is
dense in Hµ,t for any t ∈ [0, T ], where k is the kernel of K.
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Proof. (i) ⇔ (ii). We notice by Theorem 3.4, X(t) =
∫ t

0
k(t, s) dM(s) is a canonical

representation, if and only if for any T ′ ∈ [0, T ] and f ∈ Hµ,

g(t) =

∫ t

0

k(t, s)f(s)µ(ds) = 0 for all t ∈ [0, T ′]

implies f = 0 on [0, T ′]. This is equivalent to the injectivity of KT ′ = PHT ′K|HµT ′ for
any T ′ ∈ [0, T ] where K is given by Kf(t) =

∫ t

0
k(t, s)f(s)µ(ds). Since K ∈ N(Hµ),

this is further equivalent to (K,µ) is a canonical causal factorization of Σ.
(ii) ⇔ (iii). Notice Kt = PHtK|Hµ,t is injective if and only if the range of K∗

t is
dense in Hµ,t. Since Σ ∈ C(H), R(t, s) = E[X(t)X(s)] =

∫ t∧s
0

k(t, r)k(s, r)µ(dr) is
continuous. This implies r 7→ k(r, ·) ∈ Hµ is continuous. Therefore, range(K∗

t ) =

{f(s) =
∫ t

0
k(r, s)g(r) dr : g ∈ Ht} is dense if and only if the span of {k(r, ·) : r ∈ [0, t]}

is dense in Hµ,t

3.3.2 Uniqueness

In the finite dimensional case, Cholesky decomposition is unique up to a diagonal
matrix. This is saying for nondegenerate, lower-triangular matrices K1, K2 satisfying
K1K

∗
1 = K2K

∗
2 , there exists a diagonal matrix D such that K1 = K2D. However, it

is not the case for the causal factorization.

Proposition 3.12. Let Σ ∈ C(H) and (K,µ) be a causal factorization of Σ. For
any partial isometry U ∈ N(Hµ) with range dense in Hµ, (KU, µ) is again a causal
factorization of Σ. Moreover, U is not necessarily in the diagonal algebra D(Hµ),
i.e., U∗ is not necessarily in N(Hµ).

Proof. Since U is a partial isometry with a dense range, we have UU∗ = Id on Hµ.
Therefore, (KU, µ) is a causal factorization of Σ. For example, we can take U as in
the proof of Theorem 3.9. And in particular, U is not diagonal.

Such non-uniqueness generates non-canonical representations of the same Gaus-
sian process. In the following example, we include Levy’s non-canonical representation
of Brownian motion (Lévy, 1957).

Example 3.13. We define a partial isometry U on H given by U∗
1[0,t](s) = [3 −

12(s/t)+10(s/t)2]1[0,t](s). It is direct to verifyX(t) =
∫ t

0
{3−12(s/t)+10(s/t)2} dB(s)

is a Brownian motion. However, this representation is not canonical. Notice X(t) is
independent of

∫ T

0
s dB(s), which implies FX

T ⊊ FB
T .
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If we restrict ourselves to the canonical causal factorization, we retrieve a unique-
ness result analogous to the one for Cholesky decomposition.

Proposition 3.14. Let Σ ∈ C(H). Assume (K1, µ) and (K2, µ) are two canonical
causal factorizations of Σ. Then, there exists a diagonal operator D ∈ D(Hµ) such
that K1 = K2D. Moreover, D is a multiplication operator given by Df(t) = (1S(t)−
1[0,T ]\S(t))f(t) for a measurable set S ⊆ [0, T ].

Proof. Since (K2, µ) is canonical, we have K2 is injective and hence range(K∗
2) = Hµ.

Since K1K
∗
1 = K2K

∗
2 , we deduce K∗

1 and K2 share the same null space. We can define
an operator D̃ from rangeK∗

2 to range(K∗
1) such that D̃(K∗

2f) = K∗
1f . Moreover,

D̃ can be uniquely extended to an operator on Hµ = range(K∗
2). Therefore, by

taking D = D̃∗, we derive K1 = K2D. Noticing K2DK
∗
1 = K1K

∗
1 = K2K

∗
2 and

K2 is injective, we deduce DK∗
1 = K∗

2 and D∗ = K−1
1 K2. This yields that D is an

orthogonal operator on Hµ.
Now, we consider two canonical representations induced by K1 and K2

X(t) =

∫ T

0

k1(t, s) dM1(s) =

∫ T

0

k2(t, s) dM2(s),

where ki is the kernel of Ki. Since M1 and M2 generate the same filtration as X, M1 is
a FM2–martingale. Moreover, M2 is a continuous Ocone martingale with deterministic
quadratic variation. Therefore, by martingale representation theorem Vostrikova and
Yor (2007, Proposition), we have M1(t) =

∫ t

0
ρ(s) dM2(s) for some predictable process

ρ(s) taking value in {−1, 1}. Together with the fact that K2 = K1D
∗, we deduce

k2(t, ·) = Dk1(t, ·) = ρ(ω, ·)k1(t, ·) ∈ Hµ, P (dω)-a.s λ(dt)-a.e. This implies ρ(ω, ·) ∈
Hµ is deterministic and has the form of ρ(s) = 1S(s)−1[0,T ]−S(s). Otherwise, k1(t, ·) =
0 on a positive measure set which contradicts the injectivity of K1. Moreover, we
notice the span of {k1(t, ·) : t ∈ [0, T ]} is dense in Hµ as K1 is injective, and we
conclude Df(t) = f(t)(1S(t)− 1[0,T ]−S(t)).

Remark 3.15. Following the same lines of arguments, we can show that all orthogo-
nal operators O in the nest algebra N(Hµ) with PHµ,tO|Hµ,t surjective for all t ∈ [0, T ]

are diagonal. This is of sharp contrast to the result of Davidson (1998) which shows
the abundance of the unitary operators in a nest algebra on a complex Hilbert space.
Indeed, under their setting, any contraction in N(Hµ) can be represented as a finite
convex combination of unitary operators, and hence there are non-diagonal unitary
operators in N(Hµ).
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3.4 Gaussian processes
Before we present our main theorem, we show that we can always decompose a Gaus-
sian process into a deterministic part and a purely nondeterministic part. These
two parts are ‘orthogonal’, and we can calculate the adapted Wasserstein distance
separately.

Lemma 3.16. For any mean-square continuous Gaussian process X, there exists a
decomposition X = Y +Z where Y is purely nondeterministic and Z is deterministic.
Moreover, Y and Z are independent mean-square continuous Gaussian processes. The
adapted Wasserstein distance between X1 and X2 can be decomposed as

AW2(X1, X2)
2 = AW2(Y1, Y2)

2 +W2(Z1, Z2)
2.

Remark 3.17. The Wasserstein distance between two Gaussian processes Z1 and
Z2 is well studied (see Dowson and Landau (1982), Gelbrich (1990)), and can be
calculated explicitly given the covariance operators of Z1 and Z2.

Proof. The first statement is a generalization of Wold decomposition to general second
order stochastic processes, see Cramér (1971). The deterministic process Z is given
by Z(t) = P0+X(t) where Pt is the orthogonal projection from L2(Ω, P ) to the closed
subspace span{Xs : 0 ≤ s ≤ t} and P0+ = limt→0+ Pt. It is direct to verify (X,Z) is
jointly Gaussian and so is (Y, Z). Therefore, the independence of Y and Z follows from
the orthogonality of the projection. Since mean-square continuity can be preserved
by the orthogonal projection, we have Y and Z are mean-square continuous.

We proceed to show the decomposition of the adapted Wasserstein distance be-
tween X1 and X2. Noticing under any bi-causal coupling π ∈ Πbc(X1, X2), FX1

t is
conditionally independent of FX2

T given FX2
t . This implies FZ1

T = FZ1
t is conditionally

independent of FY2
T given FX2

t . Hence, we deduce

Eπ[〈Z1, Y2〉] = Eπ[Eπ[〈Z1, Y2〉|FX2
t ]] = Eπ[〈Eπ[Z1|FX2

t ], Eπ[Y2|FX2
t ]〉].

Notice that Eπ[Y2(·)|FX2
t ] = EP [X2(·)− Z2(·)|FX2

t ] = (Pt − P0+)X2(·). By Lebesgue
dominated convergence theorem, we derive Eπ[〈Z1, Y2〉] = 0 by taking t to 0. There-
fore, we have AW2(X1, X2)

2 ≥ AW2(Y1, Y2)
2 + AW2(Z1, Z2)

2. Finally, noticing for
deterministic process Zi, it holds FZi

0+ = FZi
T , and hence AW2(Z1, Z2) = W2(Z1, Z2).

For the reverse direction, we consider the optimal bi-causal coupling πY (πZ) at-
taining the adapted Wasserstein distance between Y1 and Y2 (Z1 and Z2). Then
we construct a bi-causal coupling from the independent product πY ⊗ πZ . Let
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π̂ = (Y1 + Z1, Y2 + Z2)#(πY ⊗ πZ). By Shadowing Proposition 2.22, there exists
π ∈ Πbc(X1, X2) such that (X1, X2)#π = π̂. Hence, this yields AW(X1, X2)

2 ≤
Eπ[‖X1 −X2‖2] = AW2(Y1, Y2)

2 +W2(Z1, Z2)
2.

3.4.1 Unit multiplicity

We present an explicit adapted Wasserstein distance formula for Gaussian processes
of unit multiplicity.

Theorem 3.18. Let Xi be a centered, mean-square continuous, and purely non-
deterministic Gaussian process of unit multiplicity, with canonical representation
Xi(t) =

∫ t

0
ki(t, s) dMi(s) for i = 1, 2. Then, the adapted Wasserstein distance between

X1 and X2 is given by

AW2(X1, X2)
2 =

∫ T

0

‖k1(·, s)‖2µ1(ds) +
∫ T

0

‖k2(·, s)‖2µ2(ds)

− 2

∫ T

0

|〈k1(·, s), k2(·, s)〉|
√
µ1µ2(ds),

(3.7)

where µi(ds) = [Mi](ds).
Equivalently, let Σi be the covariance operator of Xi, (Ki, µi) be a canonical causal

factorization of Σi. We have the adapted Wasserstein distance

AW2(X1, X2)
2 = tr(Σ1 + Σ2)− 2

∫ T

0

‖ dHµ1K
∗
1K2 dHµ2‖HS, (3.8)

where∫ T

0

‖ dHµ1K
∗
1K2 dHµ2‖HS := lim

∥P∥→0

∑
(s,t)∈P

‖(Pµ1,t − Pµ1,s)K
∗
1K2(Pµ2,t − Pµ2,s)‖HS,

and Pµi,t denotes the projection of Hµi
to the subspace Hµi,t = {f ∈ Hµi

: supp(f) ⊆
[0, t]}. Here, the limit is taken over all partitions P of [0, T ] with mesh size ‖P‖
converging to 0.

Remark 3.19. The distance does not depend on the choice of the canonical repre-
sentation. Indeed, if k1 and k̃1 are kernels of two canonical representations of X1, by
Proposition 3.14 we have k̃1(·, s) = k1(·, s)(1S(s) − 1[0,T ]\S(s)). Hence, plugging k̃1

into (3.7) does not change its value.

33



Remark 3.20. One shall not expect to relax the condition of the canonical represen-
tation. We consider the non-canonical representation of Brownian motion given in
Example 3.13. Naively plugging in the formula, we would obtain a positive quantity
for the adapted Wasserstein distance between two standard Brownian motions.

Remark 3.21. Although we focus on mean-square continuous Gaussian processes,
the proof can be easily adapted to the discrete-time case. Moreover, (3.8) is consistent
with the discrete-time result given in Gunasingam and Wong (2025). In discrete-time
case, the triangular integral

∫ T

0
‖ dHµ1K

∗
1K2 dHµ2‖HS can be interpreted as the sum

of the diagonal elements of K∗
1K2. Here, the notation of triangular integral is adapted

from the literature of nest algebra, e.g., Davidson (1988).

Proof of Theorem 3.18. Since FXi = FMi , by definition we obtain Πbc(X1, X2) =

Πbc(M1,M2). We apply the transfer principle and derive that

sup
π∈Πbc(X1,X2)

Eπ[〈X1, X2〉] = sup
π∈Πbc(M1,M2)

Eπ[〈X1, X2〉]

= sup
π∈Πbc(M1,M2)

Eπ

[∫ T

0

∫ T

0

k1(t, s)k2(t, s)[M1,M2](ds) dt
]
.

The second equality follows from the fact that M1 and M2 remain martingales with
respect to the product filtration under any bi-causal coupling, see Acciaio et al. (2020,
Remark 2.3). By Fubini theorem and Kunita–Watanabe inequality, we derive

sup
π∈Πbc(X1,X2)

Eπ[〈X1, X2〉] = sup
π∈Πbc(M1,M2)

Eπ

[∫ T

0

∫ T

0

k1(t, s)k2(t, s) dt[M1,M2](ds)
]

= sup
ρ(·)∈[−1,1]

Eπ

[∫ T

0

(∫ T

0

k1(t, s)k2(t, s) dt
)
ρ(s)

√
µ1µ2(ds)

]
=

∫ T

0

|〈k1(·, s), k2(·, s)〉|
√
µ1µ2(ds).

The second equality follows from the fact that √
µ1µ2 � [M1,M2] and the Radon–

Nikodym density ρ takes values in [−1, 1]. Moreover, the optimal bi-causal coupling
is induced by a Gaussian coupling

M1(t) =

∫ t

0

√
dµ1

d(µ1 + µ2)
(s) dM̃(s) and M2(t) =

∫ t

0

√
dµ2

d(µ1 + µ2)
(s)ρ(s) dM̃(s),

where ρ attains the supremum in the above estimate and M̃ is a Gaussian martingale
with independent increments, [M̃ ](ds) = (µ1 + µ2)(ds).
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For (3.8), we fix s, t ∈ [0, T ]. We notice for any f ∈ Hµ2

(Pµ1,t − Pµ1,s)K
∗
1K2(Pµ2,t − Pµ2,s)f(r1) =

∫ t

s

〈k1(·, r1), k2(·, r2)〉f(r2)µ2(dr2).

This gives

‖(Pµ1,t−Pµ1,s)K
∗
1K2(Pµ2,t−Pµ2,s)‖HS =

[∫ t

s

∫ t

s

|〈k1(·, r1), k2(·, r2)〉|2µ1(dr1)µ2(dr2)
]1/2

.

SinceXi is mean-square continuous, we have (r1, r2) 7→ 〈k1(·, r1), k2(·, r2)〉 is uniformly
continuous on [0, T ]× [0, T ]. This allows us to conclude∫ T

0

‖ dHµ1K
∗
1K2 dHµ2‖HS =

∫ T

0

|〈k1(·, s), k2(·, s)〉|
√
µ1µ2(ds).

We give several examples.

Example 3.22. We consider the adapted Wasserstein distance between a standard
Brownian motion B and a Cantor Gaussian martingale C. The covariance operator
of the Cantor Gaussian martingale C is given by E[C(t)C(s)] = F (t ∧ s), where F
is the Cantor function, also known as the Devil’s staircase. In particular, F (dt) is
mutually singular to the Lebesgue measure. This implies that under any bi-causal
coupling B(t) and C(t) are uncorrelated which gives

AW2(B,C)
2 =

∫ T

0

(t+ F (t)) dt.

In fact, every bi-causal coupling attains the adapted Wasserstein distance. On the
other hand, one can easily construct a non-bi-causal coupling by the time change of
Brownian motion under which B and C are not independent anymore and have a
transport cost strictly less than

∫ T

0
(t+ F (t)) dt.

Example 3.23. We consider the adapted Wasserstein distance between two fractional
Brownian motions. For a fractional Brownian motion BH with Hurst parameter H,
it has a stochastic representation given by

BH(t) =

∫ t

0

kH(t, s) dB(s),

where kH is the Molchan–Golosov kernel, see Molchan and Golosov (1969), Decreuse-
fond and Üstünel (1999) for example. In particular, this gives a canonical repre-
sentation of BH , see Jost (2006, Theorem 5.1). Therefore, plugging this canonical
representation into Theorem 3.18, we obtain Theorem 3.1 and have

AW2(BH1 , BH2)
2 =

∫ T

0

∫ T

0

(kH1(t, s)− kH2(t, s))
2 dt ds = ‖KH1 −KH2‖2HS.
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We remark that the synchronous coupling is the unique optimal bi-causal coupling.

Example 3.24. We consider the adapted Wasserstein distance between fractional
Ornstein–Uhlenbeck processes given by

Xi(0) = xi − λi

∫ t

0

Xi(s) ds+BHi
(t),

whose solution is given by

Xi(t) = e−λitxi +

∫ t

0

eλi(s−t)dBHi
(s).

Let X̃i(t) = Xi(t)− e−λitxi. Then, X̃i is a centered Gaussian process, and

AW2(X1, X2)
2 = AW2(X̃1, X̃2)

2 +

∫ T

0

| e−λ1tx1 − e−λ2tx2|2 dt.

By Cheridito et al. (2003, Proposition A.1), we can show X̃i is of unit multiplicity
and with a canonical representation given by

X̃i(t) =

∫ t

0

eλi(s−t)dBHi
(s) =

∫ t

0

(
kHi

(t, s) +

∫ t

s

eλi(t−r)kHi
(r, s) dr

)
dB(s)

:=

∫ t

0

kOUi
(t, s) dB(s).

By Theorem 3.18, we derive AW2(X̃1, X̃2)
2 =

∫ T

0

∫ T

0
(kOU1(t, s)− kOU2(t, s))

2 dt ds as
kOUi

≥ 0.

3.4.2 Higher multiplicity

We can also extend the result to the case of higher multiplicity.

Theorem 3.25. Let X1 and X2 be two centered, mean-square continuous, and purely-
nondeterministic Gaussian processes with canonical representations

X1(t) =
m∑
i=1

∫ t

0

ki1(t, s) dM i
1(s) and X2(t) =

n∑
j=1

∫ t

0

kj2(t, s) dM j
2 (s).

Then, the adapted Wasserstein distance between X1 and X2 is given by

AW2(X1, X2)
2 =

m∑
i=1

∫ T

0

‖ki1(·, s)‖2µi
1(ds) +

n∑
j=1

∫ T

0

‖kj2(·, s)‖2µ
j
2(ds)

− 2

∫ T

0

∥∥∥〈k̃i1(·, s), k̃j2(·, s)〉i,j∥∥∥tr

√
µ1
1µ

1
2(ds),

where k̃i1(·, s) =

√
dµi

1

dµ1
1

(s)ki1(·, s) and k̃j2(·, s) =

√
dµj

2

dµ1
2

(s)kj2(·, s).
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Remark 3.26. We point out that even though the Gaussian process X1 is one-
dimensional, its natural filtration is ‘multi-dimensional’. Indeed, we can use X1 to
reconstruct a multi-dimensional Gaussian martingale M1 = (M1

1 , . . . ,M
m
1 ) with inde-

pendent components, sharing the same natural filtration as X1. Hence, the adapted
Wasserstein distance between higher multiplicity Gaussian processes is similar to the
discrete-time multi-dimensional case (Acciaio et al., 2024) where a trace norm is
present. In the same fashion, one can derive the adapted Wasserstein distance be-
tween multi-dimensional Gaussian processes with arbitrary multiplicity. For brevity,
we only present the one-dimensional case.

Remark 3.27. Gaussian processes with higher multiplicity do exist in theory, al-
though they are mostly pathological and not common in practice. For example, the
independent sum of a standard Brownian motion and a fractional Brownian motion
with H > 3/4 is equivalent to a standard Brownian motion (Cheridito, 2001), and
hence the mixture is still a Gaussian process of unit multiplicity Hida and Hitsuda
(1993, Theorem 6.3). In Hida and Hitsuda (1993, Chapter 4), a Gaussian process
with multiplicity 2 is constructed explicitly by taking X(t) = B1(t) + F (t)B2(t),
where B1, B2 are independent standard Brownian motions, and F ′ is integrable but
F is nowhere locally square integrable.

The following is an elementary algebraic lemma which we require for the proof of
Theorem 3.25.

Lemma 3.28. Let A ∈ Rm×m, B ∈ Rn×n, and C ∈ Rm×n. Assume A and B are
semi-positive definite. Then, for any Γ ∈ Rm×n such that ( A Γ

Γ∗ B ) ≥ 0 we have

tr(CΓ∗) ≤ ‖A1/2CB1/2‖tr.

Moreover, the equality can be attained by Γ = A1/2UV B1/2 where U and V are given
by the singular value decomposition A1/2CB1/2 = UΣV .

Proof. We first show the results for nondegenerate A and B. We notice ( A Γ
Γ∗ B ) ≥ 0

is equivalent to I ≥ (A−1/2ΓB−1/2)∗(A−1/2ΓB−1/2). Moreover, the singular value
decomposition gives

tr(CΓ∗) = tr(A1/2CB1/2(A−1/2ΓB−1/2)∗) ≤ tr(Σ) = ‖A1/2CB1/2‖tr.

Now we consider the general case. Since ( A Γ
Γ∗ B ) ≥ 0 is equivalent to

(
Aε Γ
Γ∗ Bε

)
≥ 0 for

any ε > 0 where Aε = A+ εI and Bε = B + εI. We derive tr(CΓ∗) ≤ ‖A1/2
ε CB

1/2
ε ‖tr

for any ε > 0. Therefore, we conclude the proof by taking the limit ε → 0 and
noticing the equality can be attained by Γ = A1/2UV B1/2.
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Proof of Theorem 3.25. We put emphasis on the difference between the unit multi-
plicity case and the higher multiplicity case and only sketch the similar part. We
write M1 = (M1

1 , . . . ,M
m
1 ), M2 = (M1

2 , . . . ,M
n
2 ). Similar to the unit multiplicity case

we notice

sup
π∈Πbc(X1,X2)

Eπ[〈X1, X2〉] = sup
π∈Πbc(M1,M2)

Eπ[〈X1, X2〉]

= sup
π∈Πbc(M1,M2)

∑
i,j

Eπ

[∫ T

0

∫ T

0

ki1(t, s)k
j
2(t, s)[M

i
1,M

j
2 ](ds) dt

]

= sup
π∈Πbc(M1,M2)

∑
i,j

Eπ

[∫ T

0

〈ki1(·, s), k
j
2(·, s)〉Γi,j(s)

√
µ1
1µ

1
2(ds)

]
,

where Γi,j is the density of [M i
1,M

j
2 ] with respect to

√
µ1
1µ

1
2. By Kunita–Watanabe

inequality, we derivediag
(

dµ1
1

dµ1
1
, . . . ,

dµm
1

dµ1
1

)
Γ

Γ∗ diag
(

dµ1
2

dµ1
2
, . . . ,

dµn
2

dµ1
2

) (s) ≥ 0.

By Lemma 3.28, we conclude the proof. In particular, the supremum is induced by
the Gaussian coupling

M1(t) =

∫ t

0

√
diag

(
dµ1

1

dν , . . . ,
dµm

1

dν

)
(s) dM̃(s),

M2(t) =

∫ t

0

√
diag

(
dµ1

2

dν , . . . ,
dµn

2

dν

)
(s)Γ∗(s) dM̃(s),

where ν = µ1
1 + µ1

2, Γ a deterministic process attains the supremum in the above
estimate, M̃ is a Gaussian martingale with independent increments and [M̃ ](ds) =

Id ν(ds).

3.4.3 A martingale approximation to the fractional BMs

It is well-known that, except in the case H = 1/2, the fractional Brownian motion is
neither a martingale nor a Markov process. Hence, models based on fractional Brow-
nian motions in practice are often less tractable and lead to difficulty in numerical
simulation. To this end, we use the transfer principle to derive the best martingale
approximation of a fractional Brownian motion in terms of their adapted Wasserstein
distance, i.e.,

inf
M

AW2(BH ,M)2, where M is a FBH -martingale. (3.9)
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Theorem 3.29. Let kH be the Molchan–Golosov kernel of the fractional Brownian
motion BH . Then, the solution to (3.9) is given by

MH(t) =

∫ t

0

1

T − r

∫ T

r

kH(s, r) ds dB(r).

Proof. Since BH(t) =
∫ t

0
kH(t, s) dB(s) is a canonical representation, we have FBH =

FB. Without loss of generality, we may restrict (3.9) to the set of centered and square
integrable martingales. Under any bi-causal coupling π, M is still a FB-martingale.
By martingale representation theorem, we deduce

M(t) =

∫ t

0

ρ(r) dB(r), where ρ is a FB-predictable process.

Therefore, we have

inf
M

AW2(BH ,M)2 = inf
ρ
E

[∫ T

0

∣∣∣∣BH(s)−
∫ s

0

ρ(r) dB(r)

∣∣∣∣2 ds
]

= inf
ρ
E

[∫ T

0

∣∣∣∣∫ s

0

(kH(s, r)− ρ(r)) dB(r)

∣∣∣∣2 ds
]

= inf
ρ
E

[∫ T

0

∫ T

r

(kH(s, r)− ρ(r))2 ds dr
]
.

It is clear that the optimal ρ is given by ρH(r) = 1
T−r

∫ T

r
kH(s, r) ds.

We can interpret MH as the martingale whose volatility is given by the average
volatility of the prediction process of BH . To be more precise, we introduce the
prediction process ΘH of BH as the double-indexed process given by

ΘH(s; t) := E[BH(t)|FBH
s ] =

∫ s

0

kH(t, r) dB(r) for 0 ≤ s ≤ t.

In particular, for any fixed t ∈ [0, T ], ΘH(· ; t) is a martingale with volatility given by
kH(t, ·). Therefore, the volatility of the martingale MH at the current time r, ρH(r),
is given by the current volatility of the prediction process ΘH(· ; t) averaged over the
future period [r, T ].

3.5 Fractional SDEs
In this section, we investigate the adapted Wasserstein distance between 1D fractional
SDEs. Let Xi be the solution to

Xi(t) = xi +

∫ t

0

bi(Xi(s)) ds+
∫ t

0

σi(Xi(s)) dZi(s), (3.10)

where Zi(t) =
∫ t

0
ki(t, s) dBi(s) and Bi is a standard Brownian motion.
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Assumption 3.30. We assume

• bi, σi ∈ C2 with bounded first and second derivatives.

• b′′i and σ′′
i are uniformly continuous with a modulus of continuity ϱi.

• σi is positive, bounded, and bounded away from 0.

Assumption 3.31. We assume Zi(t) =
∫ t

0
ki(t, s) dBi(s) is a canonical representa-

tion. Moreover, ki satisfies

• ki(t, s) ≥ 0 for any t, s ∈ [0, T ].

• ki(·, s) ∈ C1([0, T ];R) for any s ∈ (0, T ].

• |ki(t, s)| ≤ Cs1/2−H |t − s|H−1/2 and |∂tki(t, s)| ≤ Cs1/2−H |t − s|H−3/2 for some
H ∈ (1/2, 1).

Assumption 3.32. We assume either of the following conditions holds:

(i) (bi/σi) is non-decreasing.

(ii) k1(·, s) and k2(·, s) are both non-decreasing for any s ∈ (0, T ].

The following well-posedness result is standard, and for example, can be found in
Friz and Hairer (2020, Section 8.3), Viens and Zhang (2019, Theorem A.1).

Lemma 3.33. Under Assumptions 3.30 and 3.31, fractional SDE (3.10) is well-posed
with a unique α-Hölder continuous strong solution for any α < H. The stochas-
tic integral

∫ t

0
σi(Xi(s)) dZi(s) can be interpreted as a Young integral. Moreover,

E[supt∈∈[0,T ] |Xi(t)|p] <∞ for any p ≥ 1.

Theorem 3.34. Under Assumptions 3.30, 3.31 and 3.32, the adapted Wasserstein
distance between X1 and X2 is attained by the synchronous coupling between B1 and
B2, i.e., the noises Z1 and Z2 are driven by the same Brownian motion. In particular
the synchronous coupling is a bi-causal coupling between X1 and X2.

Remark 3.35. Assumptions 3.31 and 3.32 includes the Riemann–Liouville fractional
kernel RLH(t, s) = Γ(H + 1/2)−1(t − s)H−1/2

1{t≥s}, as well as the Molchan–Golosov
kernel kH(t, s) for H ∈ (1/2, 1).

We split the proof of Theorem 3.34 into two steps. The first step is to show, by a
stochastic control reformulation, the results hold for the additive noise, i.e., σi ≡ 1.
In the second step, we apply Lamperti transform to reduce the general case to the
additive noise case.
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3.5.1 Additive noise

By strong well-posedness Lemma 3.33, we reduce the problem to a minimization over
the bi-causal coupling between the driving Brownian motions.

Lemma 3.36. Let σi ≡ 1 for i = 1, 2. Under Assumptions 3.30 and 3.31, we have
Πbc(X1, X2) = Πbc(B1, B2).

Proof. It suffices to show FXi = FBi . From the strong well-posedness, we have FXi
t ⊆

FBi
t for any t ∈ [0, T ]. Moreover, we notice

Zi(t) =

∫ t

0

ki(t, s) dBi(s) = Xi(t)− xi −
∫ t

0

bi(s,Xi(s)) ds ∈ FXi
t .

This implies FBi
t = FZi

t ⊆ FXi
t from the canonical representation of Zi. Therefore,

FXi
t = FBi

t and we conclude the proof.

Now, similar to Bion–Nadal and Talay (2019), we address the bi-causal optimal
transport problem as a stochastic control problem with the control of the correlation
of the driving Brownian motions. We consider a controlled system

X1(t) = x1 +

∫ t

0

b1(X1(s)) ds+
∫ t

0

k1(t, s) dB1(s),

Xu
2 (t) = x2 +

∫ t

0

b2(X
u
2 (s)) ds+

∫ t

0

k2(t, s) dBu
2 (s),

where dBu
2 (t) = sin(u(t)) dB1(t)+cos(u(t)) dB̃1(t) and B̃1 is a Brownian motion inde-

pendent to B1. We notice the control only enters the system through the correlation
of the driving Brownian motions. Our aim is to minimize

inf
u∈U([0,T ])

E

[∫ T

0

|X1(t)−Xu
2 (t)|

2 dt
]
,

over U([0, T ]) the set of (FB1 ∨FB̃1)-progressively measurable processes. We immedi-
ately see that X1 no longer enjoys the flow property in the sense that

X1(t) 6= X̃s,X1

1 (t), where X̃s,X1

1 (t) := X1(s)+

∫ t

s

b(X1(r)) dr+
∫ t

s

k1(t, s) dB1(r).

Therefore, the classical approach of dynamic programming does not apply directly.
To go around this issue an auxiliary system Θ is introduced in Viens and Zhang
(2019) to retrieve the flow property. We adapt their framework to our setting as

Θ1(s; t) = x1 +

∫ s

0

b1(Θ1(r; r)) dr +
∫ s

0

k1(t, r) dB1(r),

Θu
2(s; t) = x2 +

∫ s

0

b2(Θ
u
2(r; r)) dr +

∫ s

0

k2(t, r) dBu
2 (r).
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In particular, (X1(t), X
u
2 (t)) = (Θ1(t; t),Θ

u
2(t; t)) and

AW2(X1, X2)
2 = inf

π∈Πbc(B1,B2)
Eπ[‖X1−X2‖2] = inf

u∈U([0,T ])
E

[∫ T

0

|Θ1(t; t)−Θu
2(t; t)|

2 dt
]
.

We can view {(Θ1(t; ·),Θu
2(t; ·)) : t ∈ [0, T ]} as an infinite dimensional flow taking val-

ues in C([0, T ];R2). Naturally, we define the value function v : [0, T ]×C([0, T ];R2) →
R as

v(r, ω1, ω2) := inf
u∈U([r,T ])

E

[∫ T

r

|Θr,ω1

1 (t; t)−Θr,ω2,u
2 (t; t)|2 dt

]
,

where 
Θr,ω1

1 (· ; t) = ω1(t) +

∫ ·

r

b1(Θ
r,ω1

1 (s; s)) ds+
∫ ·

r

k1(t, s) dB1(s),

Θr,ω2,u
2 (· ; t) = ω2(t) +

∫ ·

r

b2(Θ
r,ω2,u
2 (s; s)) ds+

∫ ·

r

k2(t, s) dBu
2 (s).

We denote the time derivative by ∂t and the first and second Fréchet derivatives by
∂ωi

and ∂2ωiωj
, respectively. The corresponding HJB equation is given by

(∂t+L1+L2+H)V (r, ω1, ω2) = −|ω1(r)−ω2(r)|2 with V (T, ω1, ω2) = 0. (3.11)

Here, Li and H are given by

LiV (r, ω1, ω2) = 〈bi(ωi(r))1[0,T ](·), ∂ωi
V (r, ω1, ω2)(·)〉

+
1

2
〈(k1(·, r), k1(·, r)), ∂2ωiωi

V (r, ω1, ω2)(·)〉

and
HV (r, ω1, ω2) = inf

a∈[−1,1]
a〈(k1(·, r), k2(·, r)), ∂2ω1ω2

V (r, ω1, ω2)(·)〉.

We denote the expected cost under the synchronous coupling by V∗, which is given
by

V∗(r, ω1, ω2) := E

[∫ T

r

∣∣Θr,ω1

1,∗ (t; t)−Θr,ω2

2,∗ (t; t)
∣∣2 dt

]
,

where 
Θr,ω1

1,∗ (· ; t) = ω1(t) +

∫ ·

r

b1(Θ
r,ω1

1,∗ (s; s)) ds+
∫ ·

r

k1(t, s) dB1(s),

Θr,ω2

2,∗ (· ; t) = ω2(t) +

∫ ·

r

b2(Θ
r,ω2

2,∗ (s; s)) ds+
∫ ·

r

k2(t, s) dB1(s).

Our plan is to verify V∗ coincides with the value function v. To achieve this,
we adapt a functional Itô formula from Viens and Zhang (2019, Theorem 3.10) to
our setting. We note that the kernel ki has the same singularity as the fractional
Brownian motion kernel kH(t, s) for H ∈ (1/2, 1), where the singularity can only
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occur as s approaches 0. Hence, for any r > 0 Viens and Zhang (2019, Theorem
3.10) is directly applicable. The derivatives involed here are the time and Fréchet
derivatives, in contrast to the horizontal and vertical derivatives studied in Dupire
(2009), Cont and Fournié (2010). We also remark that a pathwise Itô formula for
non-anticipative functionals is derived in Cont and Fournié (2010).

Lemma 3.37 (Functional Itô formula). Let u : [0, T ]×C([0, T ];R2) → R be a purely
anticipative functional, i.e., u(t, ω1, ω2) = u(t, ω1(· ∨ t), ω2(· ∨ t)) for any t ∈ [0, T ]

and ωi ∈ C([0, T ];R). Assume u ∈ C1,2, and there exists a modulus of continuity ρ

such that for any η, η̃ ∈ C([0, T ];R), u satisfies the following conditions:

(i) for any ω1, ω2 ∈ C([0, T ];R),

|〈η, ∂ωi
u(r, ω1, ω2)〉| ≤ C(1 + ‖ω1‖∞ + ‖ω2‖∞)‖η‖∞,

|〈(η, η̃), ∂2ωiωj
u(r, ω1, ω2)〉| ≤ C(1 + ‖ω1‖∞ + ‖ω2‖∞)‖η‖∞‖η̃‖∞;

(ii) for any other ω′
1, ω

′
2 ∈ C([0, T ];R),

|〈(η, η̃), ∂2ωiωj
u(r, ω1, ω2)− ∂2ωiωj

u(r, ω′
1, ω

′
2)〉|

≤ C(1 + ‖ω1‖∞ + ‖ω2‖∞)‖η‖∞‖η̃‖∞ρ(‖ω1 − ω′
1‖∞ + ‖ω2 − ω′

2‖∞).

Then under Assumptions 3.30 and 3.31, we have

u(t,Θr,ω1

1,∗ (t; ·),Θr,ω2

2,∗ (t; ·))

= u(r, ω1, ω2) +

∫ t

r

(∂t + L1 + L2)u(s,Θ
r,ω1

1,∗ (s; ·),Θr,ω2

2,∗ (s; ·)) ds

+

∫ t

r

〈(k1(·, s), k2(·, s)), ∂2ω1ω2
u(s,Θr,ω1

1,∗ (s; ·),Θr,ω2

2,∗ (s; ·))〉 ds

+

∫ t

r

〈k1(·, s), ∂ω1u(s,Θ
r,ω1

1,∗ (s; ·),Θr,ω2

2,∗ (s; ·))〉 dB1(s)

+

∫ t

r

〈k2(·, s), ∂ω2u(s,Θ
r,ω1

1,∗ (s; ·),Θr,ω2

2,∗ (s; ·))〉 dB1(s).

The following technical lemma states that V∗ is sufficiently regular to apply the
functional Itô formula of Viens and Zhang (2019).

Lemma 3.38. Under Assumptions 3.30, 3.31, and 3.32, V∗ satisfies conditions in
Lemma 3.37, and is a classical solution to

(∂t+L1+L2)V∗(r, ω1, ω2)+〈(k1(·, r), k2(·, r)), ∂2ω1ω2
V∗(r, ω1, ω2)(·)〉 = −|ω1(r)−ω2(r)|2.

(3.12)
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Moreover, there is a probabilistic representation of ∂2ω1ω2
V∗ given by

〈(η1, η2), ∂2ω1ω2
V∗(r, ω1, ω2)〉 = −2E

[∫ T

r

〈η1,Γr,ω1

1,∗ (t)〉〈η2,Γr,ω2

2,∗ (t)〉 dt
]
, (3.13)

where Γr,ωi

i,∗ is the unique solution to

Γr,ωi

i,∗ (t) = δ(t) +

∫ t

r

b′i(Θ
r,ωi

i,∗ (s; s))Γr,ωi

i,∗ (s) ds. (3.14)

To not distract the readers, we postpone the proof of this technical result to
Section 3.6 and continue with the main line of our results.

Theorem 3.39. Under Assumptions 3.30, 3.31, and 3.32, V∗ is a classical solu-
tion to the path-dependent HJB equation (3.11). Moreover, V∗ coincides with the
value function v, and in particular, the adapted Wasserstein distance is given by
AW2(X1, X2) = V∗(0, x11[0,T ], x21[0,T ])

1/2.

Remark 3.40. We point out that a similar stochastic control approach was taken in
Bion–Nadal and Talay (2019) where they rely on the regularity and well-posedness
of nonlinear parabolic equations. However, to the best of knowledge, there is no
well-posedness result for nonlinear functional parabolic equations on Banach space
which can be directly applied to our setting. Our estimates are based on probabilistic
methods. We manage to show the existence of the classical solution to the path-
dependent HJB equation by a direct construction. It is interesting and challenging to
build a viscosity solution theory of this type of path-dependent HJB equations. We
leave this as a future research direction.

Remark 3.41. Following the same line of proof, we can show that for any non-
decreasing fi with bounded first, second, and third derivatives, synchronous coupling
is still an optimal coupling for the bi-causal optimal transport problem

inf
π∈Πbc(X1,X2)

Eπ

[∫ T

0

|f1(X1(t))− f2(X2(t))|2 dt
]
.

Also, see Remark 3.48 for more details.

Proof. We prove V∗ is a classical solution to the HJB equation (3.11). By Lemma 3.38,
it suffices to verify that 〈(k1(·, r), k2(·, r)), ∂2ω1ω2

V∗(r, ω1, ω2)〉 ≤ 0. Recall we define
Γr,ωi

i,∗ in (3.14), and it admits a unique solution

Γr,ωi

i,∗ (t) = δ(t) +

∫ t

r

exp
(∫ t

s

b′i(Θ
r,ωi

i,∗ (τ ; τ)) dτ
)
b′i(Θ

r,ωi

i,∗ (s; s))δ(s) ds. (3.15)
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We discuss two cases in Assumption 3.32 separately. If bi is non-decreasing, from
(3.15), we derive 〈ηi,Γr,ωi

i 〉 ≥ 0 for any ηi ≥ 0. Plugging it into (3.13), we conclude
V∗ is a classical solution to HJB equation (3.11) as ki(·, r) ≥ 0. If k1(·, r) and k2(·, r)
are both non-decreasing, by applying integration by part to (3.15), we derive

〈ki(·, r),Γr,ωi

i,∗ (t)〉 =
∫ t

r

exp
(∫ t

s

b′i(Θ
r,ωi

i,∗ (τ ; τ)) dτ
)
ki(ds, r)

have the same sign for i = 1, 2. Therefore, V∗ is a classical solution to (3.11).
We show that V∗ coincides with the value function v. We fix a control u ∈ U([r, T ])

and, by Lemma 3.38, we apply functional Itô formula to V∗(t,Θr,ω1

1 (t; ·),Θr,ω2,u
2 (t; ·)).

We obtain

V∗(r, ω1, ω2)

= −E
[∫ T

r

(∂t + L1 + L2)V∗(t,Θ
r,ω1

1 (t; ·),Θr,ω2,u
2 (t; ·)) dt

]
− E

[∫ T

r

sin(u(t))〈(k1(t, ·), k2(t, ·)), ∂ω1ω2V∗(t,Θ
r,ω1

1 (t; ·),Θr,ω2,u
2 (t; ·))〉 dt

]
≤ −E

[∫ T

r

(∂t + L1 + L2 +H)V∗(t,Θ
r,ω1

1 (t; ·),Θr,ω2,u
2 (t; ·)) dt

]
= E

[∫ T

r

|Θr,ω1

1 (t; t)−Θr,ω2,u
2 (t; t)|2 dt

]
.

The above inequality follows from the fact that V∗ satisfies HJB equation (3.11).
Therefore, taking infimum over U([r, T ]) we deduce

V∗(r, ω1, ω2) ≤ inf
u∈U([r,T ])

E

[∫ T

r

∣∣∣Θs,ω1(t)
1 (t; t)−Θ

s,ω2(t),u
2 (t; t)

∣∣∣2 dt
]
= v(r, ω1, ω2).

On the other hand, we notice u(r) ≡ π/2 gives an optimal control, and hence V∗ = v.

3.5.2 Multiplicative noise

Now we return to (3.10) with diffusion coefficient σi satisfying Assumption 3.30. We
write

gi(x) =

∫ x

xi

1

σi(ξ)
dξ and Yi(t) = gi(Xi(t)).

Notice that under Assumptions 3.30 and 3.31, Xi and Zi are α–Hölder with α > 1/2.
This yields, Yi, the Lamperti transform of Xi, satisfies

Yi(t) =

∫ t

0

bi(g
−1
i (Yi(s)))

σi(g
−1
i (Yi(s)))

ds+ Zi(t).
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Lemma 3.42. Under Assumptions 3.30 and 3.31, we have FXi = FBi.

Proof. By Lemma 3.33, Xi is a strong solution and hence FXi
t ⊆ FBi

t for any t ∈
[0, T ]. On the other hand, we notice Zi(t) = Yi(t) −

∫ t

0

bi(g
−1
i (Yi(s)))

σi(g
−1
i (Yi(s)))

ds, which implies
FZi

t ⊆ FYi
t . Therefore, we deduce

FBi
t = FZi

t ⊆ FYi
t ⊆ FXi

t ⊆ FBi
t .

The above lemma allows us to reduce the adapted Wasserstein distance between
X1 and X2 to a bi-causal optimal transport problem between Y1 and Y2 as

AW2(X1, X2)
2 = inf

π∈Πbc(Y1,Y2)
E

[∫ T

0

|g−1
1 (Y1(t))− g−1

2 (Y2(t))|2 dt
]
.

We construct (b̃i, σ̃i) =
(

bi◦g−1
i

σi◦g−1
i

, 1
)

. A direct calculation gives b̃′i = b′i ◦ g−1
i −

(bi◦g−1
i )(σ′

i◦g
−1
i )

σi◦g−1
i

and

b̃′′i = (b′′i ◦g−1
i )(σ◦g−1

i )−(b′i ◦g−1
i )(σ′

i ◦g−1
i )−(bi ◦g−1

i )(σ′′
i ◦g−1

i )+
(bi ◦ g−1

i )(σ′
i ◦ g−1

i )2

σi ◦ g−1
i

.

If bi were bounded, we could verify (b̃i, σ̃i) satisfies Assumptions 3.30, and (b̃i/σ̃i) is
non-decreasing if (bi/σi) is. Applying Remark 3.41 we could conclude the proof of
Theorem 3.34. For unbounded bi, we take a sequence of functions bni ∈ C2

b satisfying
Assumption 3.30 and converging to bi pointwise. In particular, we can assume bni = bi

on [−n, n], and |(bni )′| ≤ |b′i| ≤ L. We define

Xn
i (t) = xi +

∫ t

0

bni (X
n
i (s)) ds+

∫ t

0

σi(X
n
i (s)) dZi(s).

By the triangle inequality, we obtain

AW2(X
n
1 , X

n
2 ) ≤ AW2(X1, X2) +AW2(X

n
1 , X1) +AW2(X

n
2 , X2).

In order to show the synchronous coupling is optimal, we only need to show AW2(X
n
i , Xi)

goes to 0 since the synchronous coupling is already optimal between Xn
1 and Xn

2 by
previous arguments.

Lemma 3.43. Under Assumptions 3.30 and 3.31, we have limn→∞ AW2(X
n
i , Xi) = 0.
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Proof. By Lemma 3.42, we have FXn
i = FZn

i , and hence the synchronous coupling πsync

between Zn
i and Zi is a bi-causal coupling between Xn

i and Xi. We write Y n
i = gi(X

n
i )

and b̃ni =
bni ◦g

−1
i

σi◦g−1
i

. By our construction of bni , we have b̃ni = b̃i on [−n, n] and |(bni )′| ≤
|b′i| ≤ L. Without loss of generality, we may assume |bni (x)|+ |bi(x)| ≤ L(1 + |x|) for
possibly larger L.

Since σi is bounded and bounded away from 0, we derive that

AW2(X
n
i , Xi)

2 ≤ Eπsync [‖Xn
i −Xi‖2 = Eπsync [‖g−1

i (Y n
i )−g−1

i (Yi)‖2] ≤ CEπsync [‖Y n
i −Yi‖2].

Therefore, it suffices to show Y n
i converges to Yi in H in L2. Notice under πsync, we

have

|Y n
i (t)− Yi(t)|2 ≤ 2

(∫ t

0

|b̃ni (Y n
i (s))− b̃ni (Yi(s))| ds

)2

+ 2

(∫ t

0

|b̃ni (Yi(s))− b̃i(Yi(s))| ds
)2

≤ 2TL2

∫ t

0

|Y n
i (s)− Yi(s)|2 ds+ 2T

∫ t

0

|b̃ni (Yi(s))− b̃i(Yi(s))|21{|Yi(s)|≥n} ds

≤ 2TL2

∫ t

0

|Y n
i (s)− Yi(s)| ds+ 2TL2

∫ t

0

(1 + |Yi(s)|)21{|Yi(s)|≥n} ds.

By Gronwall inequality, we obtain

Eπsync [‖Y n
i − Yi‖2] ≤ C

∫ T

0

Eπsync

[
|Yi(s)|21{|Yi(s)|≥n}

]
ds.

By Lemma 3.33, Yi is in L2, and hence we derive the L2 convergence of Y n
i .

3.6 Some additional estimates
Recall

Θr,ωi

i,∗ (· ; t) = ωi(t) +

∫ ·

r

bi(Θ
r,ωi

i,∗ (s; s)) ds+
∫ ·

r

ki(t, s) dB1(s), (3.16)

and
Γr,ωi

i,∗ (t) = δ(t) +

∫ t

r

b′i(Θ
r,ωi

i,∗ (s; s))Γr,ωi

i,∗ (s) ds. (3.17)

Proposition 3.44. Let s ∈ [r, T ] and η ∈ C([0, T ];R). Under Assumptions 3.30
and 3.31, the following estimates hold with a deterministic constant C independent
of ωi and η

sup
t∈[r,T ]

E[|Θr,ωi

i,∗ (t; t)|] ≤ C(1 + ‖ωi‖∞) and sup
t∈[r,T ]

|Θr,ωi+η
i,∗ (t; t)−Θr,ωi

i,∗ (t; t)| ≤ C‖η‖∞.

Proof. It follows directly from the Gronwall inequality and the boundedness of b′.
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Proposition 3.45. Let s ∈ [r, T ] and η̃, η ∈ C([0, T ];R). Under Assumptions 3.30
and 3.31, the following estimates hold with a deterministic constant C independent
of ωi, η, and η̃

sup
t∈[r,T ]

|〈η̃,Γr,ωi

i,∗ (t)〉| ≤ C‖η̃‖∞ and sup
t∈[r,T ]

|〈η̃,Γr,ωi+η
i,∗ (t)− Γr,ωi

i,∗ (t)〉| ≤ C‖η̃‖∞‖η‖∞.

Proof. It follows directly from the Gronwall inequality and the boundedness of b′ and
b′′.

The following result shows that Γr,ωi

i,∗ is the first variation process of Θr,ωi

i,∗ .

Proposition 3.46. Let η ∈ C([0, T ];R). Under Assumptions 3.30 and 3.31, there
exists a deterministic constant C independent of ωi and η such that

sup
t∈[r,T ]

|Θr,ωi+η
i,∗ (t; t)−Θr,ωi

i,∗ (t; t)− 〈η,Γr,ωi

i,∗ (t)〉| ≤ C‖η‖2∞.

Proof. Write ∆Θ(t) = Θr,ωi+η
i,∗ (t; t) − Θr,ωi

i,∗ (t; t) and R1(t) = ∆Θ(t) − 〈η,Γr,ωi

i,∗ (t)〉.
Plugging (3.16) and (3.17), we notice that

R1(t) =

∫ t

r

b′i(Θ
r,ωi

i,∗ (s; s))R1(s) ds

+

∫ t

r

(∫ 1

0

[
b′i(Θ

r,ωi

i,∗ (s; s) + λ∆Θ(s))− b′i(Θ
r,ωi

i,∗ (s; s))
]

dλ
)
∆Θ(s) ds.

By Gronwall inequality and Proposition 3.44, we deduce

sup
t∈[r,T ]

|R1(t)| ≤ C‖η‖∞
∫ T

r

∫ 1

0

∣∣b′i(Θr,ωi

i,∗ (s; s) + λ∆Θ(s))− b′i(Θ
r,ωi

i,∗ (s; s))
∣∣ dλ ds.

Since b′′i is bounded and supt∈[r,T ] |∆Θ(t)| ≤ C‖η‖∞, we derive supt∈[r,T ] |R1(t)| ≤
C‖η‖2∞.

We define

Ξr,ωi

i,∗ (t) =

∫ t

r

exp
(∫ t

s

b′i(Θ
r,ωi

i,∗ (τ ; τ)) dτ
)
b′′i (Θ

r,ωi

i,∗ (s; s))Γr,ωi

i,∗ (s)⊗ Γr,ωi

i,∗ (s) ds, (3.18)

which is the unique solution to

Ξr,ωi

i,∗ (t) =

∫ t

r

b′i(Θ
r,ωi

i,∗ (s; s))Ξr,ωi

i,∗ (s) ds+
∫ t

r

b′′i (Θ
r,ωi

i,∗ (s; s))Γr,ωi

i,∗ (s)⊗Γr,ωi

i,∗ (s) ds. (3.19)

Proposition 3.47. Let η, η̃ ∈ C([0, T ];R). Under Assumptions 3.30 and 3.31, there
exists a deterministic constant C independent of ωi, η, and η̃ such that

sup
t∈[r,T ]

|〈η̃,Γr,ωi+η
i,∗ (t)− Γr,ωi

i,∗ (t)〉 − 〈(η, η̃),Ξr,ωi

i,∗ (t)〉| ≤ C‖η̃‖∞‖η‖∞ϱi(‖η‖∞),

where ϱi is the modulus of continuity of b′′i .
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Proof. Write ∆Γ(t) = 〈η̃,Γr,ωi+η
i,∗ (t) − Γr,ωi

i,∗ (t)〉 and R2(t) = ∆Γ(t) − 〈(η, η̃),Ξr,ωi

i,∗ (t)〉.
Plugging (3.17) and (3.19), we notice that

R2(t) =

∫ t

r

b′i(Θ
r,ωi

i,∗ (s; s))R2(s) ds

+

∫ t

r

(b′i(Θ
r,ωi+η
i,∗ (s; s))− b′i(Θ

r,ωi

i,∗ (s; s)))∆Γ(s) ds

+

∫ t

r

[
b′i(Θ

r,ωi+η
i,∗ (s; s))− b′i(Θ

r,ωi

i,∗ (s; s))− b′′i (Θ
r,ωi

i,∗ (s; s))〈η,Γr,ωi

i,∗ (s)〉
]
〈η̃,Γr,ωi

i,∗ (s)〉 ds.

By Gronwall inequality, we deduce

sup
t∈[r,T ]

|R2(t)|

≲
∫ T

r

|b′i(Θ
r,ωi+η
i,∗ (s; s))− b′i(Θ

r,ωi

i,∗ (s; s))||∆Γ(s)| ds

+

∫ T

r

|b′i(Θ
r,ωi+η
i,∗ (s; s))− b′i(Θ

r,ωi

i,∗ (s; s))− b′′i (Θ
r,ωi

i,∗ (s; s))〈η,Γr,ωi

i,∗ (s)〉||〈η̃,Γr,ωi

i,∗ (s)〉| ds

:= I1 + I2.

By Proposition 3.44 and Proposition 3.45, we notice I1 ≲ ‖η̃‖∞‖η‖2∞. For I2, we plug
in the estimates from Proposition 3.46 and obtain

I2 ≲ ‖η̃‖∞ sup
t∈[r,T ]

|R1(t)|

+ ‖η̃‖∞
∫ t

r

|b′i(Θ
r,ωi+η
i,∗ (s; s))− b′i(Θ

r,ωi

i,∗ (s; s))− b′′i (Θ
r,ωi

i,∗ (s; s))∆Θ(s)| ds

≲ ‖η̃‖∞‖η‖2∞ + ‖η̃‖∞
∫ T

r

∫ 1

0

|b′′i (Θ
r,ωi

i,∗ (s; s) + λ∆Θ(s))− b′′i (Θ
r,ωi

i,∗ )||∆Θ(s)| dλ ds.

Notice that b′′i is bounded with a module of continuity ϱi,and supt∈[r,T ] |∆Θ(t)| ≤
C‖η‖∞. By Lebesgue dominated convergence theorem, we show that supt∈[r,T ]R2(t) ≤
C‖η̃‖∞‖η‖∞ϱi(‖η‖∞).

Let c ∈ C3(R2;R) be a general cost with derivatives growing at most linearly. We
consider

u(r, ω1, ω2) := E

[∫ T

r

c(Θr,ω1

1,∗ (t; t),Θr,ω2

2,∗ (t; t)) dt
]
.

Remark 3.48. For example, we can take c(x, y) = |f1(x) − f2(y)|2, where fi has
bounded first, second, and third derivatives.
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Proposition 3.49. Under Assumptions 3.30 and 3.31, we have u is twice Fréchet
differentiable and weakly continuous. In particular, for i, j = 1, 2,

∂ωi
u(r, ω1, ω2) = E

[∫ T

r

∂ic(Θ
r,ω1

1,∗ (t; t),Θr,ω2

2,∗ (t; t))Γr,ωi

i,∗ (t) dt
]
, (3.20)

∂2ωiωj
u(r, ω1, ω2) = E

[∫ T

r

∂2ijc(Θ
r,ω1

1,∗ (t; t),Θr,ω2

2,∗ (t; t))Γr,ωi

i,∗ (t)⊗ Γ
r,ωj

j,∗ (t) dt
]

+ δi,jE

[∫ T

r

∂ic(Θ
r,ω1

1,∗ (t; t),Θr,ω2

2,∗ (t; t))Ξr,ωi

i,∗ (t) dt
]
, (3.21)

where δi,j is the Kronecker symbol.

Proof. The linear growth of ∂2ijc yields∣∣∣∣∣c(θ̃1, θ̃2)− c(θ1, θ2)−
∑
i=1,2

∂ic(θ1, θ2)(θ̃i − θi)

∣∣∣∣∣ ≤ C(1 +
∑
i=1,2

(|θ̃i|+ |θi|))
∑
i=1,2

(θ̃i − θi)
2.

Plugging θ̃i = Θr,ωi+ηi
i,∗ (t; t) and θi = Θr,ωi

i,∗ (t; t) into the above estimates, and by
Proposition 3.46, we deduce

u(r, ω1 + η1, ω2 + η2)− u(r, ω1, ω2) =
∑
i=1,2

E

[∫ T

r

∂ic(Θ
r,ω1

1,∗ (t; t),Θr,ω2

2,∗ (t; t))〈ηi,Γr,ωi

i,∗ (t)〉 dt
]

+ o(‖η1‖∞ + ‖η2‖∞).

Therefore, u is Fréchet differentiable, and (3.20) is verified. To show (3.21), we only
need to notice that ∂ic, ∂3ijkc has a linear growth and supt∈[r,T ]〈η̃i,Γ

r,ωi

i,∗ (t)〉 ≤ C‖η̃i‖∞.
By Proposition 3.47 and similar arguments as above, we deduce

〈η̃, ∂ω1u(r, ω1 + η1, ω2 + η2)− ∂ω1u(r, ω1, ω2)〉

= E

[∫ T

r

∂212c(Θ
r,ω1

1,∗ (t; t),Θr,ω2

2,∗ (t; t))〈η̃,Γr,ω1

1,∗ (t)〉〈η2,Γr,ω2

2,∗ (t)〉 dt
]

+ E

[∫ T

r

∂211c(Θ
r,ω1

1,∗ (t; t),Θr,ω2

2,∗ (t; t))〈η̃,Γr,ωi
1,∗ (t)〉〈η1,Γ

r,ωi
1,∗ (t)〉 dt

]
+ E

[∫ T

r

∂1c(Θ
r,ω1

1,∗ (t; t),Θr,ω2

2,∗ (t; t))〈(η̃, η1),Ξr,ω1

1,∗ (t)〉 dt
]
+ o(‖η1‖∞ + ‖η2‖∞).

Therefore, u is twice Fréchet differentiable and weakly continuous with derivatives
given in (3.20) and (3.21).

Proof of Lemma 3.38. We first show that u satisfies all conditions in Lemma 3.37.
We recall the regularity condition here. For any η, η̃ ∈ C([0, T ];R), it holds that
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(i) for any ω1, ω2 ∈ C([0, T ];R),

|〈η, ∂ωi
u(r, ω1, ω2)〉| ≤ C(1 + ‖ω1‖∞ + ‖ω2‖∞)‖η‖∞

|〈(η, η̃), ∂2ωiωj
u(r, ω1, ω2)〉| ≤ C(1 + ‖ω1‖∞ + ‖ω2‖∞)‖η‖∞‖η̃‖∞;

(3.22)

(ii) for any other ω′
1, ω

′
2 ∈ C([0, T ];R), there exists a modulus of continuity ρ such

that

|〈(η, η̃), ∂2ωiωj
u(r, ω1, ω2)− ∂2ωiωj

u(r, ω′
1, ω

′
2)〉|

≤ C(1 + ‖ω1‖∞ + ‖ω2‖∞)‖η‖∞‖η̃‖∞ρ(‖ω1 − ω′
1‖∞ + ‖ω2 − ω′

2‖∞).
(3.23)

We first verify (3.22). By Propositions 3.44 and 3.45, we have

sup
t∈[r,T ]

E[|Θr,ωi

i,∗ (t; t)|] ≤ C(1 + ‖ωi‖∞) and |〈η,Γr,ωi

i,∗ (t)〉| ≤ C‖η‖∞.

Plugging the above into (3.20), we derive

|〈η, ∂ωi
u(r, ω1, ω2)〉| ≤ C‖η‖∞E

[
1 + |Θr,ω1

1,∗ (t; t)|+ |Θr,ω2

2,∗ (t; t)|
]

≤ C(1 + ‖ω1‖∞ + ‖ω2‖∞)‖η‖∞.

For the second derivative, we notice

|〈(η, η̃),Γr,ωi

i,∗ (t)⊗ Γ
r,ωj

j,∗ (t)〉| = |〈η,Γr,ωi

i,∗ (t)〉〈η̃,Γr,ωj

j,∗ (t)〉| ≤ C‖η‖∞‖η̃‖∞.

Moreover, from (3.18) and the boundedness of b′i, b′′i , we deduce

|〈(η, η̃),Ξr,ωi

i,∗ (t)〉| ≤ C

∫ t

r

|〈(η, η̃),Γr,ωi

i,∗ (s)⊗ Γr,ωi

i,∗ (s)〉| ds ≤ C‖η‖∞‖η̃‖∞.

Therefore, by Proposition 3.49 and the linear growth of ∂ic, ∂2ijc, we derive

|〈(η, η̃), ∂2ωiωj
u(r, ω1, ω2)〉| ≤ C(1 + ‖ω1‖∞ + ‖ω2‖∞)‖η‖∞‖η̃‖∞.

Now, we start to verify (3.23). Since ∂2ijc has a linear growth, we have∣∣∣∂ic(Θr,ω1

1,∗ (t; t),Θr,ω2

2,∗ (t; t))− ∂ic(Θ
r,ω′

1
1,∗ (t; t),Θ

r,ω′
2

2,∗ (t; t))
∣∣∣

≤ C(1 + |Θr,ω1

1,∗ (t; t)|+ |Θr,ω2

2,∗ (t; t)|+ |Θr,ω′
1

1,∗ (t; t)|+ |Θr,ω′
2

2,∗ (t; t)|)

× (|Θr,ω1

1,∗ (t; t)−Θ
r,ω′

1
1,∗ (t; t)|+ |Θr,ω2

2,∗ (t; t)−Θ
r,ω′

2
2,∗ (t; t)|)

≤ C(1 + |Θr,ω1

1,∗ (t; t)|+ |Θr,ω2

2,∗ (t; t)|+ ‖ω1 − ω′
1‖∞ + ‖ω2 − ω′

2‖∞)

× (‖ω1 − ω′
1‖∞ + ‖ω2 − ω′

2‖∞).
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Similarly, as ∂3ijkc has a linear growth, we have∣∣∣∂2ijc(Θr,ω1

1,∗ (t; t),Θr,ω2

2,∗ (t; t))− ∂2ijc(Θ
r,ω′

1
1,∗ (t; t),Θ

r,ω′
2

2,∗ (t; t))
∣∣∣

≤ C(1 + |Θr,ω1

1,∗ (t; t)|+ |Θr,ω2

2,∗ (t; t)|+ ‖ω1 − ω′
1‖∞ + ‖ω2 − ω′

2‖∞)

× (‖ω1 − ω′
1‖∞ + ‖ω2 − ω′

2‖∞).

By Proposition 3.45, we have

|〈(η, η̃),Γr,ωi

i,∗ (t)⊗ Γ
r,ωj

j,∗ (t)− Γ
r,ω′

i
i,∗ (t)⊗ Γ

r,ω′
j

j,∗ (t)〉|

≤ C|〈η,Γr,ωi

i,∗ (t)− Γ
r,ω′

i
i,∗ (t)〉〈η̃,Γr,ωj

j,∗ (t)〉|+ C|〈η,Γr,ω′
i

i,∗ (t)〉〈η̃,Γr,ωj

j,∗ (t)− Γ
r,ω′

j

j,∗ (t)〉|

≤ C‖η‖∞‖η̃‖∞(‖ωi − ω′
i‖∞ + ‖ωj − ω′

j‖∞).

Plugging the above estimates into (3.18), we derive

|〈(η, η̃),Ξr,ωi

i,∗ (t)− Ξ
r,ω′

i
i,∗ (t)〉| ≤ C‖η‖∞‖η̃‖∞ϱi(‖ωi − ω′

i‖∞),

where ϱi is the modulus of continuity of b′′i . Combining the above estimates, we
conclude (3.23).

Now, we show that ∂tu exists and is continuous. By the Markov property of
(Θr,ω1

1,∗ ,Θ
r,ω2

2,∗ ), we have

u(r, ω1, ω2) = E

[∫ r+δ

r

c
(
Θr,ω1

1,∗ (t; t),Θr,ω2

2,∗ (t; t)
)

dt+ u(r + δ,Θr,ω1

1,∗ (r + δ; ·),Θr,ω2

2,∗ (r + δ; ·))
]
.

(3.24)
Since we have verified (3.22) and (3.23), applying Itô formula we obtain

u(r + δ,Θr,ω1

1,∗ (r + δ; ·),Θr,ω2

2,∗ (r + δ; ·))− u(r + δ, ω1, ω2)

=

∫ r+δ

r

(L1 + L2)u(s,Θ
r,ω1

1,∗ (s; ·),Θr,ω2

2,∗ (s; ·)) ds

+

∫ r+δ

r

〈(k1(·, s), k2(·, s)), ∂2ω1ω2
u(s,Θr,ω1

1,∗ (s; ·),Θr,ω2

2,∗ (s; ·))〉 ds

+

∫ r+δ

r

〈k1(·, s), ∂ω1u(s,Θ
r,ω1

1,∗ (s; ·),Θr,ω2

2,∗ (s; ·))〉 dB1(s)

+

∫ r+δ

r

〈k2(·, s), ∂ω2u(s,Θ
r,ω1

1,∗ (s; ·),Θr,ω2

2,∗ (s; ·))〉 dB1(s).

Plug the above identity into (3.24) and divide both sides by δ. Let δ go to 0, and we
deduce u satisfies

(∂t +L1 +L2)u(r, ω1, ω2) + 〈(k1(·, r), k2(·, r)), ∂2ω1ω2
u(r, ω1, ω2)(·)〉 = −c(ω1(r), ω2(r)).

(3.25)
This gives the continuity of ∂tu. We conclude the proof by noticing u = V∗ if we take
c(x, y) = |x− y|2.

52



Chapter 4

Adapted Wasserstein DRO:
Duality

4.1 Introduction
As Box famously said (Box, 1976), all models are wrong, but some are useful. In real-
world applications, practitioners often need to trade off between a model’s fidelity
(its capability to capture system features) and a model’s tractability (its capability
to provide interpretable solutions). A postulated model may capture some important
aspects of reality, while inevitably ignoring some other aspects. This is especially true
in mathematical finance, where the model is often derived from theoretical considera-
tions, possibly combined with some calibration to market data. This inherent Knigh-
tian uncertainty (Knight, 1921) regarding the model is of fundamental importance
and a subject of intense studies in mathematics and economics alike. Mathematical
frameworks such as risk measures (Föllmer and Schied, 2008) and sublinear expecta-
tions (Peng, 2019) have been developed to take into account such uncertainty. More
recently, Wasserstein distributionally robust optimization (W-DRO) has emerged as
a powerful tool to counter model uncertainty (Mohajerin Esfahani and Kuhn, 2018,
Blanchet and Murthy, 2019, Gao and Kleywegt, 2022). It is formulated as minimax
problem that optimizes a worst-case objective, evaluated over a collection of models.
This collection is often referred to as the ambiguity set and is taken as a Wasserstein
ball centered at a reference model.

In this chapter, we extend Wasserstein distributionally robust optimization (W-
DRO) to a dynamic setting, where model uncertainty is quantified by the causal/adapted
Wasserstein distance. This distance not only captures the spatial differences between
two models but also the information flow they generate. The choice of ambiguity set
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here is natural in a dynamic setting and, to some extent, becomes essential when con-
sidering optimal stopping problems. Crucially, it allows for models with potentially
different support from the reference model, similar to the classical W-DRO, while
excluding models that can only be obtained from an anticipative perturbation of the
reference model.

Despite its appealing theoretical framework, adapted Wasserstein distributionally
robust optimization (AW-DRO) often suffers from the computational challenges in-
herited from causal optimal transport. Our contribution here is to fill this gap by
providing a tractable dynamic duality formula for the AW-DRO problem in both
discrete and continuous-time settings. We focus on the distributional model risk:

sup
ν∈Bδ(µ)

Eν [f(X)],

where Bδ(µ) is an ambiguity set given by a causal Wasserstein ball or an adapted
Wasserstein ball. We will extend this ambiguity set constraint to a more general
penalized form

V⋆ = sup
ν∈P(X )

{Eν [f(X)]− L(T⋆(µ, ν))}, (4.1)

where L is a penalty function, and T⋆ represents the optimal causal/bi-causal trans-
port cost given by

T⋆(µ, ν) = inf
π∈Π⋆(µ,ν)

Eπ[c(X,Y )],

with ⋆ = c/bc respectively. By choosing an indicator penalization L and an appro-
priate cost c, one can easily recover the corresponding ambiguity set Bδ(µ).

While Vc and Vbc are not equal a priori, we will show that under mild regularity
conditions, these two penalizations are equivalent. This allows us to omit the subscript
when there is no ambiguity. Our main results, detailed in Sections 4.4 and 4.5, show
that

V = inf
λ≥0

{L∗(λ) + U(λ)},

where L∗ is the convex conjugate of L, and U is a convex function given by a dynamic
programming principle. In particular, U can be computed recursively in discrete
time, or solved by a path-dependent Hamilton–Jacobi–Bellman (HJB) equation in
continuous time. Moreover, in Sections 4.6 and 4.7 we replace the linear expectation
ν 7→ Eν [f(X)] in (4.1) with a nonlinear functional ν 7→ F (ν) and derive duality
formulas in discrete time. In Section 4.6, we take F as the expected shortfall, a
concave functional of the model; in Section 4.7, F is taken as the value of an optimal
stopping problem, which is in general not concave.
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To the best of our knowledge, this is the first result that tackles the duality of
AW-DRO in continuous time and considers optimal stopping problems. In continuous
time, we reformulate the dual problem as a non-Markovian stochastic control problem
and utilize the tools from functional Itô calculus (Cont and Fournié, 2010, Bally et al.,
2016) to establish a path-dependent HJB equation. For the AW-DR optimal stopping
problems, we leverage a novel concave relaxation which lifts the optimal stopping
problem to the space of adapted stochastic processes. The original problem is then
recast as a Wasserstein DRO problem on the ‘nested space’.

4.1.1 Related literature

Distributionally robust optimization (DRO) provides a framework for decision-making
when the underlying stochastic model is uncertain. Unlike classical stochastic opti-
mization, which assumes a single reference distribution, DRO considers a collection of
plausible distributions often defined via statistical distances such as the Wasserstein
distance or ϕ-divergences and optimizes for the worst-case expectation over this am-
biguity set. This review is focused on the transport-type DRO; for a broader survey
of the field, we refer interested readers to Rahimian and Mehrotra (2022), Kuhn et al.
(2025).

Wasserstein DRO has found broad applications in operations research, mathemat-
ical finance (Bartl et al., 2020, Blanchet et al., 2022), and machine learning (Bai et al.,
2023, 2025, Blanchet and Murthy, 2019), where robustness to model misspecification
is crucial. A key development in Wasserstein DRO is its duality theory, which reveals
a close connection to regularized optimization. This theory has been progressively
generalized, starting from the data-driven case where the reference measure is an em-
pirical measure (Mohajerin Esfahani and Kuhn, 2018), extending to Borel measures
on Euclidean spaces (Gao and Kleywegt, 2022), general Polish spaces (Blanchet and
Murthy, 2019), and to spaces with the interchangeability property, such as Suslin
spaces (Zhang et al., 2024). More recently, variants of the classical Wasserstein DRO
also have been introduced. These include the robust optimized certainty equivalents
in a penalized form (Bartl et al., 2020), a weak optimal transport-type DRO (Kup-
per et al., 2023), and problems with marginal uncertainty in both source and target
distributions (Fan et al., 2023).

Few results are available for the adapted Wasserstein DRO in a dynamic con-
text, with all existing work focusing solely on a discrete-time setting. Addressing the
causality constraint is a key challenge. In a recent work Han (2025), the author refor-
mulated the causality constraint as an infinite-dimensional linear constraint, which
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leads to a dual optimization problem over an infinite-dimensional test function space.
Our proposed dynamic duality provides a more tractable solution. It not only ac-
commodates a more general penalized setting (4.1), but critically, it leverages the
temporal structure of causal couplings. We remark that our the discrete-time dual-
ity Theorem 4.24 was also independently obtained in Gao et al. (2022), Yang et al.
(2022).

Our continuous-time results rely on tools from functional Itô calculus, which was
first proposed by Dupire (2009), and systematically studied in Cont and Fournié
(2010, 2013). It was then applied to study non-Markovian stochastic control prob-
lems and their associated path-dependent HJB equations. A verification theorem for
the classical solution was established in Bally et al. (2016, Chapter 8.3). The viscos-
ity solution theory, however, has proven more intricate, leading to several proposed
notions, for example in Tang and Zhang (2015), Ekren et al. (2014, 2016a,b), etc.

4.1.2 Outline

The rest of the chapter is organized as follows. In Section 4.2, we introduce the basic
notations and tools. In Section 4.3, as an intermediate step, we derive a general
duality formula for AW-DRO problems where the penalty is given as a function of
causal optimal transport problem. The dual problem involves a causal transport
problem with a fixed source distribution only. A generalized Fenchel–Moreau duality
theorem is proved in Lemma 4.21. In Section 4.4, we focus on the discrete-time setting
and derive a dynamic duality formula in Theorem 4.24. Under a mild continuity
condition, the equivalence between the causal penalization and bi-causal penalization
is established in Theorem 4.27. In Section 4.5, we consider a continuous-time setting
with a penalty given by the Cameron–Martin adapted Wasserstein distance. We
reformulate the dual problem as a stochastic control problem and identify the worst-
case distribution via a path-dependent HJB equation in Theorem 4.30. In Sections 4.6
and 4.7, we extend Theorem 4.24 in two directions. We replace the linear expectation
with the expected shortfall in Section 4.6, and study a numerical example of a two-
step exotic option. In Section 4.7, we consider optimal stopping problems in the
AW-DRO framework. A duality formula is derived in Theorem 4.42 by lifting the
original problem to the space of adapted processes.
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4.2 Preliminaries
Let N ∈ Z+ be the number of steps. For any 1 ≤ n ≤ m ≤ N and an N -tuple
(θ1, . . . , θN), we denote the truncation (θn, . . . , θm) by θn:m.

By Π(µ, ∗) we denote the set of couplings with a fixed first marginal µ. Accord-
ingly, Πc(µ, ∗) and Πbc(µ, ∗) represent the respective subsets of causal and bi-causal
couplings.

4.2.1 Analytic sets and universal measurability

The analytic sets (also known as Suslin sets) are widely applied to reconcile the mea-
surability issue in dynamic programming principle. We give a minimal introduction
here to serve our purpose.

Definition 4.1. Let X be a Polish space. We say S a subset of X is analytic if S is a
continuous image of a Polish space, and a function φ : X → R is upper semi-analytic
if the level set {φ ≥ r} is analytic for any r ∈ R. The universal σ-algebra of X is
defined as

⋂
µ∈P(X )

µB(X).

To ease the notation, we will not distinguish any Borel measure µ and its com-
pletion. So, for any universally measurable function φ, µ(φ) is understood as the
integration with respect to the completion of µ.

Proposition 4.2 (Bertsekas and Shreve (1996), Corollary 7.42.1). Let S ⊆ X be an
analytic set. Then S is universally measurable, and therefore any upper semi-analytic
function is universally measurable.

Proposition 4.3 (Bertsekas and Shreve (1996), Proposition 7.39). Let X and Y be
Polish spaces and D ⊆ X × Y an analytic set. Then the projection pjX (D) := {x ∈
X : (x, y) ∈ D for some y} is an analytic subset of X .

We also recall the following proposition from Bertsekas and Shreve (1996, Propo-
sition 7.50).

Proposition 4.4 (Analytic selection theorem). Let X and Y be Polish spaces and
D ⊆ X ×Y an analytic set, and φ : D → R an upper semi-analytic function. Define
φ̃ : pjX (D) → R∗ by

φ̃(x) = sup
y∈Dx

φ(x, y),
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where Dx = {y ∈ Y : (x, y) ∈ D}. Then for any ε > 0, there exists an analytically
measurable function s : pjX (D) → X such that (x, s(x)) ∈ D for any x ∈ pjX (D),
and

φ(x, s(x)) ≥

{
φ̃(x)− ε if φ̃ <∞,

1/ε if φ̃ = ∞.

The following result is adapted from Zhang et al. (2024).

Lemma 4.5. Let (X ,B) be a Polish space equipped with its Borel σ-algebra, φ :

X × X → R upper semi-analytic. Define φ̃ : X → R∗ as

φ̃(x) = sup
y∈X

φ(x, y).

Then φ̃ is universally measurable; moreover, it holds that

Eµ[sup
y∈X

φ(X, y)] = sup
π∈Π(µ,∗)

Eπ[φ(X,Y )].

Proof. Notice that for any r ∈ R we have{
x : sup

y∈X
φ(x, y) > r

}
= pjX ({(x, y) : φ(x, y) > r}).

Since φ is upper semi-analytic, we have φ̃ is also upper semi-analytic by Proposi-
tion 4.3. Moreover, by Proposition 4.2, we know φ̃ is universally measurable. It
follows from the definition that

Eµ[sup
y∈X

φ(X, y)] ≥ sup
π∈Π(µ,∗)

Eπ[φ(X,Y )].

Now, by Proposition 4.4 there exists an analytically measurable function sn : X →
X such that

φ(x, sn(x)) ≥

{
φ̃(x)− 1

n
if φ̃(x) <∞,

n if φ̃(x) = ∞.

Moreover, there exists a Borel measurable function tn such that tn = sn holds µ-a.s.
Then we take πn = (Id, tn)#µ ∈ Π(µ, ∗). We derive

Eπn [φ(X,Y )] = Eµ[φ(X, tn(X))] ≥ Eµ[φ̃1{φ̃<∞}] + nEµ[1{φ̃=∞}]−
1

n
.

As n→ ∞, we conclude

sup
π∈Π(µ,∗)

Eπ[φ(X,Y )] ≥ Eµ[sup
y∈X

φ(X, y)].
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4.2.2 Convex analysis

We recall several basic concepts and results in convex analysis.

Definition 4.6. Let φ : R → R∗ be a convex function. We define the domain of φ as

dom(φ) = {x ∈ R : φ(x) <∞}.

We say φ is proper if dom(φ) 6= ∅, and φ is closed if dom(φ) is closed. A function ψ

is proper closed concave if and only if −ψ is proper closed convex.

Definition 4.7. Let φ : R → R∗ be a convex function. The convex conjugate of
φ : R → R∗ is defined as φ∗(y) = supx∈R{xy−φ(x)}. Similarly, we define the concave
conjugate of ψ as ψ∗(y) = infx∈R{xy − ψ(x)}.

The following result is the celebrated convex duality theorem from Rockafellar
(1997, Corollary 12.2.1).

Theorem 4.8 (Fenchel–Moreau Theorem). Let φ : R → R∗ be a closed proper convex
(concave) function. Then, we have φ∗∗ = φ (φ∗∗ = φ).

We introduce the subdifferential of a convex function as an extension of the clas-
sical derivative to the convex functions which are not necessarily differentiable.

Definition 4.9 (Subdifferential). Let φ : R → R∗ be a convex function. For any
x ∈ R, we define the subdifferential of φ at x as

∂φ(x) = {y ∈ R : φ(x′) ≥ φ(x) + y(x′ − x) ∀x′ ∈ R}.

Proposition 4.10 (Rockafellar (1997), Theorem 23.5). Let φ : R → R∗ be a convex
function. If φ is proper and closed, then y ∈ ∂φ(x) if and only if x ∈ ∂φ∗(y). And
we have the equality φ(x) + φ∗(y) = xy.

4.2.3 Horizontal and vertical derivatives

Following Dupire (2009), Cont and Fournié (2010), Bally et al. (2016), we introduce
the horizontal and vertical derivatives of a non-anticipative functional. We start with
the definition of a non-anticipative functional on the càdlàg path space D([0, T ];Rn).

Definition 4.11. We say a functional F : [0, T ]×D([0, T ];Rn) → R is non-anticipative
if F (t, x) = F (t,X(· ∧ t)) for any t ∈ [0, T ] and x ∈ D([0, T ];Rn).
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Definition 4.12. A non-anticipative functional F is said to be horizontally differen-
tiable at (t, x) ∈ [0, T ]×D([0, T ];Rn) if the limit

DF (t, x) = lim
h→0+

F (t+ h, x(· ∧ t))− F (t, x(· ∧ t))
h

exists.

We call DF (t, x) the horizontal derivative of F at (t, x).

Definition 4.13. A non-anticipative functional F is said to be vertically differentiable
at (t, x) ∈ [0, T ]×D([0, T ];Rn) if the map

Rn 3 e 7→ F (t, x(· ∧ t) + e1[t,T ]) ∈ R

is differentiable at 0. We call its gradient at 0 the vertical derivative of F at (t, x)

and denote it by ∇xF (t, x).

Before we proceed to the non-anticipative functional on the continuous path
space, we introduce some regularity conditions. We equip the product space [0, T ]×
D([0, T ];Rn) with the metric

d∞((t, x), (t′, x′)) := |t− t′|+ sup
s∈[0,T ]

‖x(· ∧ t)− x′(· ∧ t′)‖∞.

Definition 4.14 (Left continuity). We say a non-anticipative functional F is left
continuous if for any (t, x) ∈ [0, T ]×D([0, T ];Rn) and any sequence (tn, xn)

d∞→ (t, x)

in [0, T ]×D([0, T ];Rn) with tn increasing, we have

F (tn, xn) → F (t, x).

By Cl we denote the space of left continuous non-anticipative functionals which are
also continuous at any fixed time t ∈ [0, T ].

Definition 4.15 (Boundedness preserving). We say a non-anticipative functional F
is boundedness preserving if for any M > 0 and t0 < T there exists CM,t0 such that

|F (t, x)| ≤ CM,t0 if ‖x(· ∧ t0)‖∞ ≤M.

By Cb we denote the space of bounded preserving non-anticipative functionals.

The following class of regular non-anticipative functionals plays a special role in
functional Itô calculus.

Definition 4.16. We say a non-anticipative functional F is in the class C1,2
b if the

following conditions hold:

60



(i) F admits horizontal and the first and second vertical derivatives for any (t, x) ∈
[0, T ]×D([0, T ];Rn).

(ii) F,DF,∇xF,∇2
xF ∈ Cl.

(iii) DF,∇xF,∇2
xF ∈ Cb.

Theorem 4.17 (Bally et al. (2016), Theorem 5.27, Theorem 5.28). Let F1, F2 be two
non-anticipative functionals in C1,2

b . If F1 and F2 are equal on all continuous paths,
then their first and second horizontal derivatives coincide on all continuous paths.

We say a non-anticipative functional F : [0, T ] × C([0, T ];Rn) is of class C1,2
b if

there exists a non-anticipative functional G : [0, T ] × D([0, T ];Rn) → R such that
F = G on [0, T ]× C([0, T ];Rn) and G ∈ C1,2

b . The vertical derivative of F is defined
as the one of G. The above theorem ensures such definition is independent of the
choice of G.

4.3 A convex duality
In this section, we present a convex duality in Proposition 4.19 which works in both
discrete and continuous-time settings. It decouples the loss function L and acts as an
intermediate step to derive the duality for adapted Wasserstein DRO problems.

Assumption 4.18. We assume the following conditions:

(i) L : R∗ → R∗ is a non-decreasing closed proper convex function with L(0) = 0

and L(+∞) = +∞.

(ii) c : X ×X → R∗ is lower semi-analytic and non-negative with c(x, y) = 0 if and
only if x = y for any x, y ∈ X .

(iii) f : X → R is upper semi-analytic and µ-integrable.

Proposition 4.19. Under Assumption 4.18, we have the duality

Vc = sup
ν∈P(X )

{Eν [f(X)]− L(Tc(µ, ν))} = inf
λ≥0

{L∗(λ) + U(λ)},

where L∗ is the convex conjugate of L, and U(λ) = supπ∈Πc(µ,∗)Eπ[f(Y )− λc(X,Y )].
Moreover, there exists a dual optimizer λ∗ attaining the infimum. If there exist ν∗ ∈ X
and π∗ ∈ Πc(µ, ν∗) such that

L∗(λ∗) = λ∗Eπ∗ [c(X,Y )]− L(Eπ∗ [c(X,Y )]) and U(λ∗) = Eπ∗ [f(Y )− λ∗c(X,Y )],
(4.2)
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then it holds
Vc = Eν∗ [f(X)]− L(Tc(µ, ν∗)) = L∗(λ∗) + U(λ∗).

Remark 4.20. Let P 3 µ be a convex subset of P(X ) and Πc(µ,P) =
⋃

ν∈P Πc(µ, ν).
One can extend the above duality to a closed proper concave functional F : P → R.
Under Assumption 4.18 (i) and (ii), it holds

sup
ν∈P

{F (ν)− L(Tc(µ, ν))} = inf
λ≥0

{L∗(λ) + sup
ν∈P

{F (ν)− Tc(µ, ν)}}.

Proof. Step 1. We first show the case L = +∞1(δ,+∞] for some δ ≥ 0. We write

V (δ) = sup
Tc(µ,ν)≤δ

Eν [f(X)].

We claim that V (δ) is proper and concave by naturally setting V as −∞ on the
negative real line. The concavity of V follows directly from the convexity of the set
of causal couplings Πc(µ, ∗). By Assumption 4.18 (ii) and (iii), we obtain V is proper
as V (0) = Eµ[f(X)] < ∞. If V (δ) = +∞ for some δ > 0, then V (δ) = +∞ for any
δ > 0. In this case it is direct to verify the desired duality

V (δ) = inf
λ≥0

{λδ + sup
π∈Πc(µ,∗)

{Eπ[f(Y )− λc(X,Y )]}} = +∞.

Now, we focus on the case V (δ) < +∞ for any δ ≥ 0. In particular, V is closed,
proper, and concave. We calculate the concave conjugate of V as

V∗(λ) = inf
δ≥0

{λδ − sup
Tc(µ,ν)≤δ

Eν [f(X)]} = inf
δ≥0

inf
Tc(µ,ν)≤δ

{λδ − Eν [f(X)]}

= inf
ν∈P(X )

inf
δ≥Tc(µ,ν)

{λδ − Eν [f(X)]}

= inf
ν∈P(X )

{λTc(µ, ν)− Eν [f(X)]}

= inf
π∈Πc(µ,∗)

Eπ[λc(X,Y )− f(Y )].

By Fenchel–Moreau Theorem 4.8, we have V = (V∗)∗ which yields

V (δ) = inf
λ≥0

{λδ − V∗(λ)}

= inf
λ≥0

{λδ − inf
π∈Πc(µ,∗)

{Eπ[λc(X,Y )− f(Y )]}}

= inf
λ≥0

{λδ + sup
π∈Πc(µ,∗)

{Eπ[f(Y )− λc(X,Y )]}}.

The desired duality is shown by noticing L∗(λ) = δλ when L = +∞1(δ,+∞].
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Step 2. We consider a general penalization L satisfying Assumption 4.18 (i). We
notice that

sup
ν∈P(X )

{Eν [f(X)]− L(Tc(µ, ν))} ≤ sup
ν∈P(X )

{V (Tc(µ, ν))− L(Tc(µ, ν))}

≤ sup
δ≥0

{V (δ)− L(δ)}.

On the other hand, since L is non-decreasing, we have for any δ ≥ 0

V (δ)− L(δ) = sup
Tc(µ,ν)≤δ

{Eν [f(X)]− L(δ)} ≤ sup
Tc(µ,ν)≤δ

{Eν [f(X)]− L(Tc(µ, ν))}.

Hence, we derive supν∈P(X ){Eν [f(X)]−L(Tc(µ, ν))} = supδ≥0{V (δ)−L(δ)}. Plugging
the result from Step 1, we obtain

sup
ν∈P(X )

{Eν [f(X)]− L(Tc(µ, ν))} = sup
δ≥0

{V (δ)− L(δ)}

= sup
δ≥0

inf
λ≥0

{λδ − L(δ) + sup
π∈Πc(µ,∗)

Eπ[f(Y )− λc(X,Y )]}

:= sup
δ≥0

inf
λ≥0

{λδ − L(δ) + U(λ)}.

Here, U(λ) = supπ∈Πc(µ,∗)Eπ[f(Y ) − λc(X,Y )] either is equal to +∞ for any λ ≥ 0

or is a closed proper convex function of λ. In the former case, it is direct to verify

sup
ν∈P(X )

{Eν [f(X)]− L(Tc(µ, ν))} = inf
λ≥0

{L∗(λ) + U(λ)} = +∞.

In the latter case, the duality will follow from Lemma 4.21 below.
Step 3. We notice by definition (L∗ + U) is lower semi-continuous and goes to

infinity at infinity. Therefore, there exists a minimizer λ∗. Given a pair (ν∗, π∗)

satisfying the slackness condition (4.2), we derive

Eν∗ [f(X)]− L(Tc(µ, ν∗)) ≥ λ∗Eπ∗ [c(X,Y )]− L(Eπ∗ [c(X,Y )]) + Eπ∗ [f(Y )− λ∗c(X,Y )]

= L∗(λ∗) + U(λ) = Vc.

The reverse direction is trivial and we complete the proof.

We did not find a direct reference for the following lemma, so we include a proof
for the completeness.

Lemma 4.21. Let φ, ψ : R → R∗ be two closed proper convex functions. Then, we
have the following minimax theorem

sup
x∈R

inf
y∈R

{xy − φ(x) + ψ(y)} = inf
y∈R

sup
x∈R

{xy − φ(x) + ψ(y)}.
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Remark 4.22. This lemma generalizes Fenchel–Moreau theorem. By taking ψ as a
linear function, we retrieve the classical Fenchel–Moreau theorem φ∗∗ = φ.

Proof. By definition, we have

sup
x∈R

inf
y∈R

{xy − φ(x) + ψ(y)} ≤ inf
y∈R

sup
x∈R

{xy − φ(x) + ψ(y)}.

For the other direction, we know

inf
y∈R

sup
x∈R

{xy − φ(x) + ψ(y)} = inf
y∈R

{φ∗(y) + ψ(y)}.

Without loss of generality, we take y0 satisfying 0 ∈ ∂φ∗(y0) + ∂ψ(y0) and x0 ∈
∂φ∗(y0) ∩ −∂ψ(y0). Otherwise, we have φ∗ and ψ are monotone and bounded from
below, and thus

inf
y∈R

{φ∗(y) + ψ(y)} = inf
y∈R

φ∗(y) + inf
y∈R

ψ(y)

= −φ(0) + inf
y∈R

ψ(y) ≤ sup
x∈R

inf
y∈R

{xy − φ(x) + ψ(y)}.

By Proposition 4.10, we have

φ(x0) + φ∗(y0) = x0y0,

and
ψ(y)− ψ(y0) + x0(y − y0) ≥ 0.

Therefore, we derive

sup
x∈R

inf
y∈R

{xy − φ(x0) + ψ(y)} ≥ inf
y∈R

{x0y − φ(x) + ψ(y)}

= inf
y∈R

{x0y0 − φ(x0) + ψ(y0) + [ψ(y)− ψ(y0) + x0(y − y0)]}

≥ φ∗(y0) + ψ(y0) ≥ inf
y∈R

sup
x∈R

{xy − φ(x) + ψ(y)}.

4.4 Discrete-time results
In this section, we focus on the discrete-time setting. We take I = {0, 1, . . . , N}
and X = X0 × X1 × · · · × XN . In light of Proposition 4.19, it suffices to compute
supπ∈Πc(µ,∗)Eπ[f(Y ) − λc(X,Y )], which can be viewed as causal optimal transport
problem with constraint of the source measure only. We will exploit a key dynamic
temporal structure of causal couplings from the following proposition.
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Proposition 4.23 (Backhoff-Veraguas et al. (2017)). The following statements are
equivalent:

• π ∈ Π(µ, ∗) is a causal coupling with the first marginal µ.

• Decomposing π in terms of successive regular kernels

π(dx, dy) = π0(dx0, dy0)πx0,y0(dx1, dy1) · · · πx0:N−1,y0:N−1
(dxN , dyN),

for any 1 ≤ n ≤ N and π-almost surely x0:n−1, y0:n−1 we have

πx0:n−1,y0:n−1(dxn, dyn) ∈ Π(µx0:n−1(dxn), ∗),

and π0(dx0, dy0) ∈ Π(µ0(dx0), ∗).

Theorem 4.24. Under Assumption 4.18, we have a dynamic duality formula

Vc = sup
ν∈P(X )

{Eν [f(X)]− L(Tc(µ, ν))} = inf
λ≥0

{L∗(λ) + U(λ)}, (4.3)

where U is given by

U(λ) = µ0( sup
y0∈X0

{· · ·µx0:N−1
( sup
yN∈XN

{f(y)− λc(x, y)}) · · · }). (4.4)

Remark 4.25. If N = 0, we retrieve the classical Wasserstein DRO duality results
(Blanchet and Murthy, 2019, Bartl et al., 2020, Zhang et al., 2024) in this static
setting.

Proof. We first show that the following quantities are well-defined:

UN(x0:N−1, y0:N−1) := sup
πN∈Π(µx0:N−1

,∗)
EπN

[f(y0:N−1, YN)− λc(x0:N−1, XN , y0:N−1, YN)]

and for 1 ≤ n ≤ N − 1

Un(x0:n−1, y0:n−1) := sup
πn∈Π(µx0:n−1 ,∗)

Eπn [Un+1(x0:n−1, Xn, y0:n−1, Yn)].

We claim UN is upper semi-analytic. It follows from Bertsekas and Shreve (1996,
Proposition 7.48) that

D = {(x0:N−1, y0:N−1, π) : (x, y) ∈ X × X , π ∈ Π(µx0:N−1
, ∗)}

is Borel, and
(x0:N−1, y0:N−1, π) 7→ Eπ[f(Y )− λc(X,Y )]
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is upper semi-analytic. By Bertsekas and Shreve (1996, Proposition 7.47), we obtain
UN is upper semi-analytic. Therefore, UN is universally measurable, and this implies
UN−1 is well-defined. Recursively, we can show Un is again upper semi-analytic for
any 1 ≤ n ≤ N . By Proposition 4.23, we decompose the optimization problem
supπ∈Πc(µ,∗)Eπ[f(Y )− λc(X,Y )] into single step problems as

U(λ) = sup
π∈Πc(µ,∗)

Eπ[f(Y )− λc(X,Y )]

= sup
π0∈Π(µ0,∗)

Eπ0

[
· · · sup

πN∈Π(µx1:N−1
,∗)
EπN

[f(Y )− λc(X,Y )] · · ·
]
.

As we have shown Un is upper semi-analytic for any 1 ≤ n ≤ N , applying Lemma 4.5
we derive (4.4).

Our next result answers the question when the bi-causal and the causal ambiguity
sets are equivalent in terms of their corresponding distributional risks.

Assumption 4.26. We assume there exists p ≥ 1 such that the following conditions
hold:

(i) L : R∗ → R∗ is non-decreasing and continuous on its domain {L <∞}.

(ii) c : X × X → R is continuous and has a polynomial growth

|c(x, y)| ≤ C(1 + dX (x̃, x)
p + dX (x̃, y)

p) for some x̃ ∈ X .

(iii) f : X → R is continuous and has a polynomial growth

|f(x)| ≤ C(1 + dX (x̃, x)
p) for some x̃ ∈ X .

Theorem 4.27. We assume that X has no isolated points. Under Assumption 4.26,
we have Vc = Vbc, i.e.,

sup
ν∈P(X )

{Eν [f(X)]− L(Tc(µ, ν))} = sup
ν∈P(X )

{Eν [f(X)]− L(Tbc(µ, ν))}.

Proof. We lift the problem to the space of adapted stochastic processes introduced
in Chapter 2. Recall by AP we denote the space of adapted stochastic processes with
paths in X , and by NP we denote the space of naturally filtered stochastic processes.
It is clear that we can reformulate the desired identity as

sup
Y∈NP

{EQ[f(Y )]− L(Tc(X,Y))} = sup
Y∈NP

{EQ[f(Y )]− L(Tbc(X,Y))},
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where X = (X ,F ,F, µ,X) and Y = (ΩY,FY,FY, Q, Y ). Since we assume X has no
isolated points, by Bartl et al. (2024, Theorem 5.4) NP is a dense subset of AP in
AWp. By Assumption 4.26 (ii) and Eckstein and Pammer (2024, Theorem 3.6), both
Y 7→ Tc(X,Y) and Y 7→ Tbc(X,Y) are continuous with respect to AWp. Combining
these facts with Assumption 4.26 (iii), we derive

sup
Y∈NP

{EQ[f(Y )]− L(Tc(X,Y))} = sup
Y∈AP

{EQ[f(Y )]− L(Tc(X,Y))},

and
sup
Y∈NP

{EQ[f(Y )]− L(Tbc(X,Y))} = sup
Y∈AP

{EQ[f(Y )]− L(Tbc(X,Y))}.

For any Y ∈ AP, we construct Ỹ = (ΩY,FY, F̃Y, Q, Y ) ∈ AP where F̃Y = {FY}t∈I is
the constant filtration with the richest σ-algebra. This yields the inclusion Πc(X,Y) ⊆
Πbc(X, Ỹ) as any coupling is causal form Ỹ to X. Hence, we deduce Tc(X,Y) ≥
Tbc(X, Ỹ), and together with Assumption 4.26 (i) we show

sup
Y∈AP

{EQ[f(Y )]− L(Tc(X,Y))} = sup
Y∈NP

{EQ[f(Y )]− L(Tc(X,Y))}

≤ sup
Y∈NP

{EQ[f(Y )]− L(Tbc(X, Ỹ))}

≤ sup
Y∈AP

{EQ[f(Y )]− L(Tbc(X,Y))}.

The reverse direction is trivial, and we conclude the proof.

We remark that this result generalizes the arguments in Bartl and Wiesel (2023,
Lemma 3.1) to abstract Polish spaces.

4.5 Continuous-time results
We set up the continuous time problem as follows. Let (Ω,F , P ) be a Polish proba-
bility space supporting a standard n-dimensional Brownian motion B. We consider
a path-dependent SDE given by

α(t) =

∫ t

0

b(s, α(· ∧ s)) ds+
∫ t

0

σ(s, α(· ∧ s)) dB(s). (4.5)

Assumption 4.28. We assume SDE (4.5) has a unique strong solution α, and the
law of α(t) is non-atomic for any 0 < t ≤ T .

The strong well-posedness holds, for example in Bally et al. (2016, Theorem 8.1),
if the coefficients b and σ are Lipschitz continuous and have linear growth. In a
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Markovian setting, the celebrated Hörmander theorem gives a sufficient condition
when the law of α(t) is non-atomic. More recently, it has been extended to a path-
dependent SDE setting in Ohashi et al. (2021).

We take the reference model as µ = α#P and are interested in the case where
c(x, y) = ‖x − y‖2

H1
0

as the square of the Cameron–Martin norm on the path space
X = C0([0, T ];Rn).

Assumption 4.29. We assume the following conditions:

(i) L : R∗ → R∗ is a non-decreasing closed proper convex function with L(0) = 0

and L(+∞) = +∞.

(ii) f : X → R is continuous and has a quadratic growth |f(x)| ≤ C(1 + ‖x‖2∞).

Theorem 4.30. Assume the semi-linear path-dependent PDE

DU(t, x, y;λ) + b(t, x)⊺(∇x +∇y)U(t, x, y;λ)

+
1

2
tr(σ(t, x)⊺σ(t, x)(∇2

xx +∇2
yy + 2∇2

xy)U(t, x, y;λ)) +
1

4λ
‖∇yU(t, x, y;λ)‖2 = 0

(4.6)
with boundary condition U(T, x, y;λ) = f(y) has a non-anticipative C1,2

b solution U

such that ∇yU(t, x, y) is Lipschitz with a linear growth. Then under Assumptions 4.28
and 4.29 we have

Vc = sup
ν∈P(X )

{Eν [f(Y )]− L(Tc(µ, ν))} = inf
λ≥0

{L∗(λ) + U(λ)},

where
U(λ) := U(0, 0, 0;λ) = sup

π∈Πc(µ,∗)
Eπ[f(Y )− λc(X,Y )].

Remark 4.31. When the reference model µ is the Wiener measure γ, the above
path-dependent PDE (4.6) reads as

DU(t, x, y;λ) + 1

2
tr((∇2

xx +∇2
yy + 2∇xy)U(t, x, y;λ)) +

1

4λ
‖∇yU(t, x, y;λ)‖2 = 0.

The change of the variable U = 2λ log(W ) turns the above equation to a linear PDE
and yields a unique classical solution given explicitly by

U(t, x, y;λ) = 2λ log
(∫

C([0,T ];Rn)

exp
(
f(z)

2λ

)
γy(·∧t)(dz)

)
.

The following result is adapted from Beiglböck and Lacker (2020, Theorem 1.2)
which shows that the set of Monge causal couplings with a first marginal µ are dense
in Πc(µ, ∗). We postpone the proof to the end of the current section.
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Lemma 4.32. Let Γc(µ, ∗) denote the set of Monge causal couplings with a fixed first
marginal µ. Under Assumption 4.28, we have

sup
π∈Πc(µ,∗)

Eπ[f(Y )− λc(X,Y )] = sup
π∈Γc(µ,∗)

Eπ[f(Y )− λc(X,Y )].

Proof of Theorem 4.30. Step 1. We first show the solution to (4.6) coincides with the
value function of a non-Markovian stochastic optimal control problem. For brevity
of the notation, we fix λ > 0 and omit the λ argument in U . For two paths ω, η ∈
C0([0, T ];Rn) with ω(s) = η(s) we introduce their concatenation at time s as

ω ⊗s η(t) :=

{
ω(t), if t ≤ s,

η(t), if t > s.

Let (αs,x, βs,x,y,u) be a controlled system given by
αs,x(·) = x(s) +

∫ ·

s

b(t, x⊗s α
s,x) dt+

∫ ·

s

σ(t, x⊗s α
s,x) dB(t),

βs,x,y,u(·) = y(s) +

∫ ·

s

[b(t, x⊗s α
s,x) + u(t)] dt+

∫ ·

s

σ(t, x⊗s α
s,x) dB(t),

with the aim of maximizing the objective

J(s, x, y, u) = EP

[
f(y ⊗s β

s,x,y,u)− λ

∫ T

s

‖u(t)‖2 dt
]

over U([s, T ]) the set of FB-progressively measurable processes. The Hamiltonian
associated to the control problem H : [0, T ]×C([0, T ];R2n)× (Rn)2× (Rn×n)3 is given
by

H(t, x, y, ρx, ρy, Axx, Ayy, Axy)

= sup
u∈Rn

{
b(t, x)⊺(ρx + ρy) +

1

2
tr(σ(t, x)⊺σ(t, x)(Axx + Ayy + 2Axy)) + u⊺ρy − λ‖u‖2

}
= b(t, x)⊺(ρx + ρy) +

1

2
tr(σ(t, x)⊺σ(t, x)(Axx + Ayy + 2Axy)) +

‖ρy‖2

4λ
.

In particular, the above supremum is attained when u = 1
2λ
ρy. Since we assume U is

a C1,2
b solution, by Bally et al. (2016, Theorem 8.16), it is clear that

U(s, x, y) ≥ sup
u∈U([s,T ])

J(s, x, y, u).

On the other hand, as we assume ∇yU is Lipschitz, there exists a unique solution to

αs,x(·) = x(s) +

∫ ·

s

b(t, x⊗s α
s,x) dt+

∫ ·

s

σ(t, x⊗s α
s,x) dB(t),

βs,x,y
∗ (·) = y(s) +

∫ ·

s

[
b(t, x⊗s α

s,x) +
1

2λ
∇yU(t, x⊗s α

s,x, y ⊗s β
s,x,y
∗ )

]
dt

+

∫ ·

s

σ(t, x⊗s α
s,x) dB(t).

(4.7)
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This yields that u∗(t) = 1
2λ
∇yU(t, x ⊗s α

s,x, y ⊗s β
s,x,y
∗ ) ∈ U([s, T ]) is an optimal

control since u = 1
2λ
ρy attained the supremum in the Hamiltonian H. Therefore, we

derive
U(s, x, y) = J(s, x, y, u∗) = sup

u∈U([s,T ])

J(s, x, y, u).

Step 2. We show U(0, 0, 0;λ) = supπ∈Πc(µ,∗)Eπ[f(Y ) − λc(X,Y )]. We notice
that (B,α)#P is a bi-causal coupling by Cont and Lim (2024, Theorem 3.2), and
in particular, (α,B)#P is causal. Moreover, (B, u)#P is a causal coupling for any
u ∈ U([0, T ]) since u is FB-progressively measurable. Hence, by the gluing lemma 2.19
we derive that (α, u)#P is a causal coupling which further implies πu := (α, βu)#P

is a causal coupling as dβu = dα + du. This gives us

U(0, 0, 0;λ) = EP

[
f(βu∗)− λ

∫ T

0

‖u∗(t)‖2 dt
]
= Eπu∗ [f(Y )− λc(X,Y )]

≤ sup
π∈Πc(µ,∗)

Eπ[f(Y )− λc(X,Y )].

For the reverse direction, let Û([0, T ];Rn) be the set of Fα-progressively measur-
able processes. Recall Γc(µ, ∗) is the set of causal Monge couplings with a fixed
first marginal µ. For any π ∈ Γc(µ, ∗) with Eπ[c(X,Y )] < ∞, there exists a non-
anticipative map Φ : [0, T ]×C([0, T ];Rn) → Rn such that Y (t) = X(t)+

∫ t

0
Φ(s,X) ds

holds π-a.s. This induces a control uπ(t) := Φ(t, α) ∈ Û([0, T ]). Therefore, together
with Lemma 4.32 we have

U(0, 0, 0;λ) ≥ sup
u∈Û([0,T ];Rn)

J(0, 0, 0, u) ≥ sup
π∈Γc(µ,∗)

Eπ[f(Y )− λc(X,Y )]

= sup
π∈Πc(µ,∗)

Eπ[f(Y )− λc(X,Y )].

Notice that Assumption 4.29 implies Assumption 4.18. Applying Proposition 4.19,
we conclude the proof.

Proposition 4.33. Under the conditions of Theorem 4.30, if further U(λ) is differ-
entiable on its domain, then we have Vc = Vbc, i.e.,

sup
ν∈P(X )

{Eν [f(Y )]− L(Tc(µ, ν))} = sup
ν∈P(X )

{Eν [f(Y )]− L(Tbc(µ, ν))}.

Proof. Step 1. We recall that π∗ = (α, β∗)#P attains the supremum in

U(λ) = sup
π∈Πc(µ,∗)

Eπ[f(Y )− λc(X,Y )]
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where (α, β∗) is given in (4.7). We claim that π∗ is actually a bi-causal coupling. To
see this, we can reformulate (4.7) as

α(t) = −
∫ t

0

1

2λ
∇yU(s, α, β∗) ds+ β∗(t).

As we assume ∇yU is Lipschitz, there exists a non-anticipative functional F such that
α(t) = F (t, β∗) holds π∗-a.s. This implies that π∗ is a causal from β∗ to α, and hence
it is a bi-causal coupling.

Step 2. Following Proposition 4.19, there exists a minimizer λ∗ of infλ≥0{L∗(λ) +

U(λ)}. This implies 0 ∈ ∂L∗(λ∗) + ∂U(λ∗). We notice that

U(λ)− U(λ∗) ≥ Eπ∗ [f(Y )− λc(X,Y )]− Eπ∗ [f(Y )− λ∗c(X,Y )]

= −Eπ∗ [c(X,Y )](λ− λ∗).

Together with the assumption that U is differentiable, we obtain {−Eπ∗ [c(X,Y )]} =

∂U(λ∗). Hence, we deduce that Eπ∗ [c(X,Y )] ∈ ∂L∗(λ∗). Therefore, by Proposi-
tion 4.10 we obtain

L∗(λ∗) = λ∗Eπ∗ [c(X,Y )]− L(Eπ∗ [c(X,Y )]).

It follows from the bi-causality of π∗ and Proposition 4.19 that

Vc = Eπ∗ [f(Y )]− L(Eπ∗ [c(X,Y )]) ≤ sup
ν∈P(X )

{Eν [f(Y )]− L(Tbc(µ, ν))} = Vbc.

The reverse direction is trivial as Πbc(µ, ∗) ⊆ Πc(µ, ∗).

Proof of Lemma 4.32. When λ = 0, it is clear that the identity holds with both sides
equal to supx∈X f(x). For λ > 0, we rely on the proof of Beiglböck and Lacker (2020,
Theorem 5.2). Let Z = Y − X. We fix a π0 ∈ Πc(µ, ∗) such that Eπ0 [‖Z‖2H1

0
] <

∞. We notice π̃ = (X,Z)#π0 is also in Πc(µ, ∗). By Beiglböck and Lacker (2020,
Theorem 1.2), there exist piecewise linear FX-adapted processes {Zn}n≥1 such that
(X,Zn)#π0 converges weakly to π̃. In this case, Zn can be further chosen such as
limn→∞Eπ0 [‖Zn‖2H1

0
] = Eπ0 [‖Z‖2H1

0
]. Therefore, πn = (X,X + Zn)#π0 ∈ Γc(µ, ∗) and

satisfies

sup
π∈Γc(µ,∗)

Eπ[f(Y )− λc(X,Y )] ≥ lim
n→∞

Eπn [f(Y )− λc(X,Y )] = Eπ0 [f(Y )− λc(X,Y )].

The arbitrary choice of π0 allows us to derive

sup
π∈Γc(µ,∗)

Eπ[f(Y )− λc(X,Y )] ≥ sup
π∈Πc(µ,∗)

Eπ[f(Y )− λc(X,Y )].

The reverse direction is trivial as Γc(µ, ∗) ⊆ Πc(µ, ∗).
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4.6 Distributionally robust expected shortfall
In this section, we consider the extension of our duality formula from a linear ex-
pectation to a convex risk measure in a discrete-time setting. Let f : X → R be a
path-dependent payoff of a contingent claim and α ∈ (0, 1) a risk aversion parameter.
The expected shortfall ESα is a law-invariant convex risk measure given by

ESα(f ;µ) := sup
η≪µ, dη

dµ≤α−1

Eη[f(X)].

We are interested in its performance under a model misspecification, and write its
adapted Wasserstein distributionally robust counterpart ESα as

ESα(f ;µ) := sup
ν∈P(X )

{ESα(f ; ν)− L(Tc(µ, ν))}.

Assumption 4.34. We assume the following conditions:

(i) L : R∗ → R∗ is a non-decreasing closed proper convex function with L(0) = 0

and L(+∞) = +∞.

(ii) c : X × X → R∗ is lower semi-continuous and non-negative with c(x, y) = 0 if
and only if x = y for any x, y ∈ X .

(iii) f : X → R is non-negative and upper semi-continuous.

We derive the following duality representation of ESα(f).

Theorem 4.35. Under Assumption 4.34, we have

ESα(f ;µ) = inf
λ,γ≥0

{L∗(λ) + γ + U(λ, γ)},

where U(λ, γ) = supπ∈Πc(µ,∗)Eπ[α
−1(f(Y )− γ)+ − λc(X,Y )] can be computed by

U(λ, γ) = µ0( sup
y0∈X0

{· · ·µx0:N−1
( sup
yN∈XN

{α−1(f(y)− γ)+ − λc(x, y)}) · · · }).

Proof. It is shown in Föllmer and Schied (2008, Theorem 4.39) that the expected
shortfall has a dual representation given by

ESα(f ;µ) = inf
γ≥0

{γ + α−1Eµ[(f(X)− γ)+]}.
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In particular, this implies µ 7→ ESα(f ;µ) is a concave functional. By Remark 4.20,
we derive

ESα(f ;µ) = inf
λ≥0

{L∗λ+ sup
ν∈P(X )

{ESα(f ;µ)− Tc(µ, ν)}}

= inf
λ≥0

{L∗(λ) + sup
π∈Πc(µ,∗)

inf
γ≥0

{γ + Eπ[α
−1(f(Y )− γ)+ − λc(X,Y )]}}.

Now it suffices to show that we can swap the inner sup and inf and apply the same
arguments as Theorem 4.24. We fix λ ≥ 0 and consider the first case when

sup
π∈Πc(µ,∗)

Eπ[α
−1f(Y )− λc(X,Y )] = +∞. (4.8)

The inequality

γ + Eπ[α
−1(f(Y )− γ)+ − λc(X,Y )] ≥ γ − α−1γ + Eπ[α

−1f(Y )− λc(X,Y )]

yields
inf
γ≥0

sup
π∈Πc(µ,∗)

{γ + Eπ[α
−1(f(Y )− γ)+ − λc(X,Y )]} = +∞.

On the other hand, we take a sequence of πn ∈ Πc(µ, ∗) such that Eπn [(α
−1f(Y ) −

λc(X,Y ))] goes to infinity. We write πn(dx, dy) = µ(dx)ηn(x, dy) and define

π̃n(dx, dy) = µ(dx)[αηn(x, dy) + (1− α)δx(dy)].

It is direct to verify that π̃n is again causal as it is a linear combination of two causal
couplings. We further notice

inf
γ≥0

{γ + Eπ̃n [α
−1(f(Y )− γ)+ − λc(X,Y )]}

= inf
γ≥0

{γ + α−1Eπ̃n [(f(Y )− γ)+]} − λαEπn [c(X,Y )]

≥ sup
0≤ξ≤α−1,Eπ̃n [ξ]≤1

Eπ̃n [f(Y )ξ]− λαEπn [c(X,Y )]

≥ αEπn [α
−1f(Y )− λc(X,Y )].

The second equality follows from the duality representation of ESα; the last inequality
follows by taking ξ = dπn

dπ̃n
∈ [0, α−1]. Therefore, we deduce the duality holds with

sup
π∈Πc(µ,∗)

inf
γ≥0

{γ + Eπ[α
−1(f(Y )− γ)+ − λc(X,Y )]} = +∞.

The second case is to consider

sup
π∈Πc(µ,∗)

Eπ[α
−1f(Y )− λc(X,Y )] <∞. (4.9)
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We write
I := inf

γ≥0
sup

π∈Πc(µ,∗)
{γ + Eπ[α

−1(f(Y )− γ)+ − λc(X,Y )]}.

Since γmax := supπ∈Πc(µ,∗)Eπ[α
−1f(Y ) − λc(X,Y )] < ∞, it follows from Fan (1953,

Theorem 2) that

I = inf
γ∈[0,γmax]

sup
π∈Πc(µ,∗)

{γ + Eπ[α
−1(f(Y )− γ)+ − λc(X,Y )]}

= sup
π∈Πc(µ,∗)

inf
γ∈[0,γmax]

{γ + Eπ[α
−1(f(Y )− γ)+]− λc(X,Y )}.

Let πδ ∈ Πc(µ, ∗) such that

inf
γ∈[0,γmax]

{γ + Eπδ
[α−1(f(Y )− γ)+ − λc(X,Y )]} ≥ I − δ.

Since the support of any probability measure on a Polish space is σ-compact, we may
assume Xn is σ-compact for simplicity. In particular, we can write Xn = limm→∞ Km

n ,
where {Km

n }m≥1 is ascending and compact. We write Km = Km
0 ×Km

1 ×· · ·×Km
N and

Πm := {π ∈ Πc(µ, ∗) : supp(π) ⊆ X ×Km}. Without loss of generality, we assume

Eπδ
[1X×(Km)c ] + Eπδ

[1X×(Km)c(α
−1f(Y )− λc(X,Y ))] ≤ 1

m
.

We fix x̃ ∈ K1 and define π̃ = [x 7→ (x, x̃)]#µ. We construct a causal coupling πm as

πm(·) = πδ(· ∩ (X ×Km)) + (1− πδ(X ×Km)π̃(·) ∈ Πm

— it follows from the fact that πδ(· ∩ (X × Km))/πδ(X × Km) is causal. Therefore,
we derive

sup
π∈Πm

inf
γ∈[0,γmax]

{γ + Eπ[α
−1(f(Y )− γ)+ − λc(X,Y )]}

≥ inf
γ∈[0,γmax]

{γ + Eπm [α−1(f(Y )− γ)+ − λc(X,Y )]}

≥ inf
γ∈[0,γmax]

{γ + Eπδ
[α−1(f(Y )− γ)+ − λc(X,Y )]− 1

m
− 1

m
Eµ[λc(X, x0)]}

≥ I − δ − 1

m
(1 + Eµ[λc(X, x0)]).

Here, the second last inequality follows from the estimate (4.6). On the other hand,
Πm is compact under the weak topology, see Lassalle (2018, Theorem 3 (i)). Therefore,
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we apply the minimax theorem from Fan (1953) and derive

sup
π∈Πc(µ,∗)

inf
γ≥0

{γ + Eπ[α
−1(f(Y )− γ)+ − λc(X,Y )]}

≥ lim
m→∞

sup
π∈Πm

inf
γ≥0

{γ + Eπ[α
−1(f(Y )− γ)+ − λc(X,Y )]}

= lim
m→∞

inf
γ≥0

sup
π∈Πm

{γ + Eπ[α
−1(f(Y )− γ)+ − λc(X,Y )]}

= lim
m→∞

inf
γ∈[0,γmax]

sup
π∈Πm

{γ + Eπ[α
−1(f(Y )− γ)+ − λc(X,Y )]}

= lim
m→∞

sup
π∈Πm

inf
γ∈[0,γmax]

{γ + Eπ[α
−1(f(Y )− γ)+ − λc(X,Y )]}

≥ I − δ.

The arbitrary choice of δ allows us to conclude the proof.

Example 4.36. We consider a two-step exotic option. Let X = (X0, X1, X2) be the
underlying asset, f(x) = (x2 − x1 +1−K)+ the payoff of the option. We set interest
rates and dividends to zero for simplicity. Let µ be a reference pricing measure of
the underlying. In this example we assume µ is the finite marginal of a geometric
Brownian motion S given by

dSt = σSt dWt, S0 = 1.

We set α = 0.95, σ = 0.2, (X0, X1, X2) ∼ (S0, S0.5, S1), c(x, y) = |x − y|2, and L =

+∞1(0.32,+∞]. In Figure 4.1, we plot the expected shortfall of the exotic option under
different strikes. The classical expected shortfall ESα, the AW-DR expected shortfall
ESα, the W-DR expected shortfall are in solid, dashed, and dotted respectively. The
gap between the solid and the dashed lines corresponds to the extra risk coming from
the model uncertainty.

We emphasize that, in certain cases, restricting to non-anticipative model uncer-
tainty does not lead to a reduction in risk. For example, consider the calendar spread
payoff f(x) = (x2 −K)+ − (x1 −K)+ with any separable cost c.

Remark 4.37. We can extend the risk-indifference pricing (Xu, 2006) to a model
misspecification context. For simplicity, we assume zero initial capital and liability.
The risk-indifference (sell) price is the minimum price a trader will charge so that
the total risk of their portfolio will not increase. Here, we take the risk measure as
the distributionally robust expected shortfall to counter the model uncertainty. The
corresponding distributionally robust risk-indifference price is given by

inf
H∈H

ESα(f + (H◦X)N ;µ)− inf
H∈H

ESα((H◦X)N ;µ),
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Figure 4.1: Comparison of W-DR expected shortfall (dotted), AW-DR expected short-
fall (dashed), and standard expected shortfall (solid) for an exotic option.

where H is the set of all predictable hedging strategies and (H◦X)N =
∑N

n=1Hn(Xn−
Xn−1) is the discrete stochastic integral. By Theorem 4.35, we write

inf
H∈H

ESα(f + (H◦X)N ;µ) = inf
λ,γ≥0

{L∗(λ) + γ + inf
H∈H

U(λ, γ,H)},

where

U(λ, γ) = µ0( sup
y0∈X0

{· · ·µx0:N−1
( sup
yN∈XN

{α−1(f(y)+
N∑

n=1

Hn(yn−yn−1)−γ)+−λc(x, y)}) · · · }).

As α goes to 0, it is known that the risk-indifference price under ESα converges to
the superhedging price. Under the current context, the robust superhedging price is
given by

ρ(f) := inf{x : x+ (H◦X)N ≥ f − L(Tc(µ, ν)) for some H ∈ H ν-a.s.}.

We stress that this is a nondominated framework and is different from the setting
in Bouchard and Nutz (2015). Indeed, we consider all possible measures ν ∈ P(X )

with a penalization L(Tc(µ, ν)), whereas in Bouchard and Nutz (2015) the authors
considered a collection of measures which is stable under the concatenation of kernels.
If X is compact and f is continuous, one can write down a pricing–hedging duality
as

ρ(f) = sup
ν∈P(X )

sup
η≪ν,η∈M (X )

{Eη[f(X)]− L(Tc(µ, ν))},

where M (X ) denotes the set of martingale measures on X . However, it is unclear if
this holds under a more general setting, and we leave it for future work.
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4.7 Extension to optimal stopping problems
In this section, our aim is to derive a duality formula for AW-DR optimal stopping
problems. We stick to a discrete-time setup, and let fn : X0:n → R for n ∈ I denote
the payoff if the process stops at time n. We introduce the optimal stopping problem
as

OS(f ;µ) := sup
τ∈T

Eµ[fτ (X0:τ )],

where T is the set of F-stopping times. The corresponding adapted Wasserstein
distributionally robust counterpart is given by

OS(f ;µ) := sup
ν∈P(X )

{sup
τ∈T

Eν [fτ (X0:τ )]− L(Tbc(µ, ν))}. (4.10)

2

1

2

μ2

1

2

1

2

μ1

1

+ =

Figure 4.2: Different averages of adapted stochastic processes X1 = (X ,F ,F, µ1, X)
and X2 = (X ,F ,F, µ2, X). The upper process is a naturally filtered stochastic pro-
cess, while the lower one is the process carrying extra information from the coin toss.

Before we proceed, we first observe that µ 7→ OS(f ;µ) fails to be concave in
general. This prohibits us to apply Remark 4.20 directly as in Section 4.6. In
Figure 4.2, we illustrate a concrete example by taking µ1 = 1

2
(δ(0,0,1) + δ(0,0,−1)),

µ2 = 1
2
(δ(0,0,2) + δ(0,0,−2)), and fn(x0:n) = |x2n − 1|. Under this setting, it is direct to

compute
1

2
(OS(f ;µ1) + OS(f ;µ2)) =

1

2
(1 + 3) >

3

2
= OS(f ; (µ1 + µ2)/2),

and hence OS(f ; u) is not concave in µ. In order to retrieve the concavity, we consider
a relaxation of the control set T . Heuristically, we can realize a process with law
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1
2
(µ1 + µ2) by tossing a fair coin at the initial step and then follow the process with

law µ1 or µ2 depending on the outcome of the coin. If the stopping time was with
respect to the natural filtration augmented by the coin toss, we would be able to
stop the process depending on the outcome of the coin toss. This would allow us to
achieve an optimal stopping value exactly equal to 1

2
(OS(f ;µ1) + OS(f ;µ2)).

In light of the above arguments, we lift the AW-DR optimal stopping problem to
the space of adapted processes AP to allow richer filtrations. We define

OS(f ;X) := sup
Y∈AP

{ sup
τ∈T Y

EQ[fτ (Y0:τ )]− L(Tbc(X,Y))},

where X = (X ,F ,F, µ,X), Y = (ΩY,FY,FY, Q, Y ), and T Y the set of FY-stopping
time. It is direct to verify OS(f ;µ) is equivalent to the above formulation if we
replace the optimizing set AP by NP. One may argue that on AP there is no natural
linear structure as different adapted stochastic processes may live on different filtered
probability spaces. To resolve this issue, we recall the nested space and the nested
distribution introduced in Chapter 2.

Definition 4.38 (Nested space). We recursively define X̂N = XN and

X̂n = X̂−
n × X̂+

n := Xn × P(X̂n+1) for 0 ≤ n ≤ N − 1.

For any x̂n ∈ X̂n, we write it as x̂n = (x̂−n , x̂
+
n ) with x̂−n ∈ Xn and x̂+n ∈ P(X̂n+1). We

say X̂ = X̂0 is the nested space associated to X .

We naturally extend the nested distribution to AP.

Definition 4.39 (Nested distribution). For a given adapted stochastic process X =

(ΩX,FX,FX, X, PX) ∈ AP, the associated information process X̂ is given recursively
by X̂N := XN and

X̂n = (X̂−
n , X̂

+
n ) := (Xn,Law(X̂X

n+1|FX
n )).

We say P̂X = Law(X̂0) ∈ P(X̂ ) is the nested distribution associated to X.

Assumption 4.40. We assume there exists p ≥ 1 such that the following conditions
hold:

(i) L : R∗ → R∗ is non-decreasing and continuous on its domain {L <∞}.

(ii) c : X × X → R is continuous and has a polynomial growth

|c(x, y)| ≤ C(1 + dX (x̃, x)
p + dX (x̃, y)

p) for some x̃ ∈ X .
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(iii) fn : X0:n → R is continuous and has a polynomial growth

|fn(x0:n)| ≤ C(1 + dX (x̃0:n, x0:n)
p) for some x̃0:n ∈ X0:n.

The following result shows that the bi-causal optimal transport problem between
two adapted stochastic processes can be solved by a dynamic programming principle,
and this is equivalent to a classical optimal transport problem on the nested space.
The proof is similar to Bartl et al. (2024, Theorem 3.10), and we postpone it to the
end of this section.

Proposition 4.41. Let X = (ΩX,FX,FX, P,X) and Y = (ΩY,FY,FY, Q, Y ) be two
adapted stochastic processes. Under Assumption 4.40, there exists a continuous func-
tion ĉ : X̂ × X̂ → R such that

Tbc(X,Y) = inf
π∈Π(P̂ ,Q̂)

Eπ[ĉ(X̂, Ŷ )] := T̂ (P̂ , Q̂).

Theorem 4.42. We recursively define f̂n : X̂0:n → R for n ∈ I as follows. Let
fN(x̂0:N) := f(x−0:N) and for n = N − 1, . . . , 0

f̂n(x̂0:n) := max{fn(x̂−0:n), x̂+n (f̂n+1(x̂0:n, ·))}.

We assume X has no isolated points. Under Assumption 4.40, we have

OS(f ;µ) = inf
λ≥0

{L∗(λ) + µ̂(sup
ŷ
{f̂(ŷ)− ĉ(x̂, ŷ)})},

where µ̂ ∈ P(X̂ ) is the nested distribution associated to X = (X ,F ,F, µ,X) and ĉ is
the cost function given in Proposition 4.41.

Proof. Step 1. We first show OS(f ;µ) = OS(f ;X). Since we assume X has no isolated
points, by Bartl et al. (2024, Theorem 5.4) NP is a dense subset of AP in AWp. By
Assumption 4.40 (ii) and Eckstein and Pammer (2024, Theorem 3.6), Y 7→ Tc(X,Y)
are continuous with respect to AWp. Moreover, by Assumption 4.40 (iii) and Bartl
et al. (2024, Proposition 6.1 (ii)), the value of optimal stopping problem is continuous
in AWp. These properties yield

OS(f ;X) = sup
Y∈AP

{ sup
τ∈T Y

EQ[fτ (Y0:τ )]− L(Tbc(X,Y))}

= sup
Y∈NP

{ sup
τ∈T Y

EQ[fτ (Y0:τ )]− L(Tbc(X,Y))} = OS(f ;µ).
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Step 2. We now derive the duality formula for OS(f ;X). Notice by Snell envelope
theorem, we have

sup
τ∈T Y

EQ[fτ (Y0:τ )] = EQ̂[f̂(X̂)],

where Q̂ is the nested distribution associated to Y. Combining this with Proposi-
tion 4.41 yields

OS(f ;X) = sup
Y∈AP

{ sup
τ∈T Y

EQ[fτ (Y0:τ )]− L(Tbc(X,Y))}

≤ sup
Q̂∈P(X̂ )

{EQ̂[f̂(X̂)]− L(T̂ (µ̂, Q̂)}.

On the other hand, for any Q̂ ∈ P(X̂ ) we can construct an adapted stochastic
process Y such that Q̂ is the nested distribution associated to Y. Indeed, we can take
Y = (X̂0:N ,F ,F, Q, X̂−), where F = B(X̂0:N), F = (Fn)

N
n=0 with Fn = σ(X̂0:n), X̂−

is the projection from X̂0:N to X̂0:n, and

Q(dx̂0, dx̂1, . . . , dx̂N) = Q̂(dx̂0)x̂+0 (dx̂1) . . . x̂+N−1(dx̂N).

Therefore, we derive

OS(f ;X) = sup
Q̂∈P(X̂ )

{EQ̂[f̂(X̂)]− L(T̂ (µ̂, Q̂)}.

The right-hand side is a static Wasserstein DRO problem. Applying Theorem 4.24
with N = 0, we derive the desired duality.

Proof of Proposition 4.41. We recursively define ĉn : X̂0:n × X̂0:n → R for n ∈ I. Let
ĉN(x̂0:N , ŷ0:N) = c(x−0:n, y

−
0:n) and

ĉn(x̂0:n, ŷ0:n) = sup
π∈Π(x̂+

n ,ŷ+n )

Eπ[ĉn+1(x̂0:n, X̂n+1, ŷ0:n, Ŷn+1)].

Notice that each ĉn is a classic optimal transport problem, and hence it is continuous
by Assumption 4.40 (ii) and Bogachev and Popova (2021, Corollary 3.6). We recall
the definition of X̂n in Definition 4.39

X̂n = (X̂−
n , X̂

+
n ) := (Xn,Law(X̂X

n+1|FX
n )).

Now we notice

inf
π∈Πbc(X,Y)

Eπ[c(X,Y )] = inf
π∈Πbc(X,Y)

Eπ[ĉN(X̂, Ŷ )]

= inf
π∈Πbc(X,Y)

Eπ[Eπ[ĉN(X̂, Ŷ )|FX
n−1 ⊗FY

n−1]

= inf
π∈Πbc(X,Y)

Eπ[ sup
γ∈Π(X̂+

n ,Ŷ +
n )

E(ξ,η)∼γ[ĉN(X̂0:N−1, ξ, Ŷ0:N−1, η)]]

= inf
π∈Πbc(X,Y)

Eπ[ĉN−1(X̂0:N−1, Ŷ0:N−1)].
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The last equality follows from an extension of Backhoff-Veraguas et al. (2017, Propo-
sition 2.4). We apply the above argument repeatedly, and obtain

Tbc(X,Y) = inf
π∈Π(P̂ ,Q̂)

Eπ[ĉ(X̂, Ŷ )],

where we set ĉ = ĉ0.
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Chapter 5

Adapted Wasserstein DRO:
Sensitivity

5.1 Introduction
Naturally, the issue of model uncertainty and its impact on agents’ course of action is a
topic with a long history, including in decision theory and mathematical finance. Any
lecture in mathematical finance covering derivatives’ pricing, will typically also cover
the ‘Greeks’, the sensitivities of the prices to key model parameters, used through-
out the financial industry. Parametric, or similarly specific, sensitivities of optimal
investment problems have been considered in a number of works, see Larsen and
Žitković (2007), Mostovyi and Sîrbu (2019) and the references therein. Specifically,
the framework of robust utility maximization, which benefits from a strong axiomatic
justification (Gilboa and Schmeidler, 1989, Maccheroni et al., 2006), has been studied
in depth. Its analytic properties such as the existence of optimal strategies (Tevzadze
et al., 2013, Neufeld and Nutz, 2018), for formulation of a dynamic programming
principle (Schied, 2007, Zitković, 2009, Källblad et al., 2018), and relation to 2BS-
DEs (Matoussi et al., 2015), are well-understood. However, except special cases, these
works rarely allow for any explicit computations.

In this chapter, we study adapted Wasserstein DRO by computing the explicit
sensitivity to model uncertainty itself. To this end, we fix p, q > 1 with 1/p+1/q = 1

and introduce a parameterized variant of AW-DRO as

V (δ) = sup
ν∈P(X )

{Eν [f(X)]− Lδ(CWp(µ, ν))}, (5.1)

where L is a penalty function, Lδ(·) = δL(·/δ), and CWp is the p-causal Wasserstein
distance. The penalty strength is controlled through the real-valued parameter δ
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which, in the special case of an indicator penalty, is simply the radius of the uncer-
tainty ball. Furthermore, we focus on a case of central interest in robust finance:
pricing financial derivatives in a misspecified non-arbitrage market. This requires
imposing a martingale constraint on the set of models, leading to the problem:

VMart(δ) = sup
ν∈M (X )

{Eν [f(X)]− Lδ(AWp(µ, ν))}, (5.2)

where M (X ) denotes the set of martingale measures. We note that we penalize the
two problems using different, though related, distances. As established in Chapter 4,
these penalizations are equivalent in the discrete-time settings we consider here.

We set up the discrete-time framework as follows. Let I = {0, 1, . . . , N} and
X = {0} × (Rn)N . By | · | we denote the lp-norm on Rn and by | · |∗ we denote the
lq-norm on Rn. Let ∆ : X → X be the increment map given by (0, x1, . . . , xN) 7→
(0, x1, . . . , xN − xN−1). We equip X with the metric given by

dN(x, y) =

(
N∑

n=1

|∆xn −∆yn|p
)1/p

. (5.3)

We set CWp in (5.1) and AWp in (5.2) the distances induced by dN . In Theorem 5.15
we show that under mild regularity conditions the sensitivity of (5.1) is given by

Υ := lim
δ→0

1

δ
(V (δ)− V (0)) = L∗

Eµ

[
N∑

n=1

|Eµ[Dnf(X)|Fn]|q∗

]1/q, (5.4)

where L∗ is the convex conjugate of L, and D = (D1, . . . ,DN) is the pullback of
∇ = (∂1, . . . , ∂N) under ∆. For the martingale constraint problem (5.2) with p = 2,
Theorem 5.18 shows that

ΥMart : = lim
δ→0

1

δ
(VMart(δ)− VMart(0))

= L∗

Eµ

[
N∑

n=1

|Eµ[Dnf(X)|Fn]− Eµ[Dnf(X)|Fn−1]|2∗

]1/2. (5.5)

Our discrete-time results (5.4) and (5.5) thus offer a multi-step extension to the
single-period sensitivities studied in Bartl et al. (2021).

With the discrete-time results in hand, we investigate the corresponding continuous-
time limits in different scaling regimes. We focus on stochastic processes with paths
in X = C0([0, T ];Rn), i.e., the space of continuous paths starting at 0. For any
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path ω ∈ X , we denote by ωN = (0, ω(T/N), . . . , ω(T )) its discretization. We first
introduce the hyperbolic scaling:

d(ω, η) := lim
N→∞

(
N

T

)1−1/p

dN(ω
N , ηN) = ‖ω − η‖W 1,p

0
,

where the Sobolev norm is given by ‖ω‖W 1,p
0

= ‖ω̇‖Lp . This scaling regime is natural
for capturing uncertainty in the drift of a process. Under such scaling, we show in
Theorem 5.22 that the sensitivity converges to a natural continuous-time analogue of
(5.4) given by

Υ = lim
δ→0

1

δ
(V (δ)− V (0)) = L∗

(
Eµ

[∫ T

0

|Eµ[Dtf(X)|Ft]|q∗ dt
]1/q)

, (5.6)

where Dt is a novel pathwise Malliavin derivative (intuitively) given by

〈Dtf(ω), e〉 := lim
ε→0

f(ω + εe1[0,t])− f(ω)

ε
.

We defer the formal definition of D and the relation to the classical Malliavin deriva-
tive to Section 5.2. However, a similar limiting argument under the martingale con-
straint would feature the difference of the optional and predictable projections, which
is known to be a thin process and would thus give ΥMart = 0. Alternatively, this is
also clear from Doob’s decomposition: processes at a finite bi-causal distance under
d(ω, η) = ‖ω − η‖W 1,p

0
will only differ by their finite variation part. In fact, there

is no other martingale measure in any causal Wasserstein neighborhood of a given
martingale measure µ in the current scaling.

Put differently, the hyperbolic scaling is not critical for the martingale constraint
problem. To allow ambiguity in the volatility, we have to ‘zoom out’ by using a
parabolic scaling. For p = 2, this corresponds to a limiting distance given by

d(ω, η) = lim
N→∞

dN(ω
N , ηN) =

√
[ω − η]T ,

where [·]T denotes the scalar quadratic variation at terminal time T . We take µ as
the Wiener measure, denote the classical Malliavin derivative by D and focus on the
objective of the form of

f(X) = U(H), for H =

∫ T

0

〈h(t,X(· ∧ t)), dX(t)〉,

for reasons explored in Remark 5.27. In Theorem 5.30, we derive the sensitivity

ΥMart = L∗

(
Eµ

[∫ T

0

‖φ(t)‖2F dt
]1/2)

,
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where ‖ · ‖F is the Frobenius norm, ⊺ is the linear transpose, and

φ(t) = Eµ[Dt+DtU(H)− U ′(H)D⊺
th(t,X(· ∧ t))|Ft].

The terms hyperbolic and parabolic scaling are borrowed from the literature on
hydrodynamic limits of interacting particle systems, see Kipnis and Landim (1999).
Roughly speaking, if the microparticle system has a non-zero mean, its distribution
profile converges to a macroscopic continuity equation under hyperbolic scaling, char-
acterizing a drift process. Conversely, if the particle system is centered, its distribu-
tion profile converges to a macroscopic Fokker–Planck equation under parabolic scal-
ing, characterizing a diffusion process. In our context, hyperbolic scaling corresponds
to the model’s drift uncertainty, while parabolic scaling corresponds to its volatility
uncertainty. In particular, the adverse distribution is approximately a perturbation
of the reference model by a drift process and a diffusion process, respectively.

For the continuous-time results, both scaling regimes are novel since we do not
require an inner product structure on C0([0, T ];Rn). Under hyperbolic scaling, es-
sentially we derive a pathwise first order expansion along any path h in the Sobolev
space W 1,p

0 ([0, T ];Rn). We introduce a pathwise Malliavin derivative such that the di-
rectional derivative of f along η can be represented as 〈Df, η̇〉. For parabolic scaling,
we study the property of the forward integral against a martingale

∫ T

0
〈Φ(t), d−M(t)〉.

A new stochastic Fubini theorem is established in Theorem 5.12 which states that
we can swap the order of the forward integral and the Itô integral with an extra
correction term. The sensitivity ΥMart then follows from a first order expansion in
Lemma 5.36.

5.1.1 Related literature

To study (5.1) and (5.2), there are two lines of research: duality and sensitivity. We
refer to Chapter 4 for a review on the duality approach and focus here on the literature
concerning sensitivity. In the static setting, the classical Wasserstein DRO sensitivity
was first derived in Bartl et al. (2021) with an indicator penalty and later extended
to a general penalization in Nendel and Sgarabottolo (2024). These foundational
results have recently been generalized to multi-step dynamic contexts, with a focus
on settings that have a specific dynamic Markovian structure (Fuhrmann et al., 2023,
Langner et al., 2024, Neufeld and Sester, 2024, Mirmominov and Wiesel, 2024).

Under an adapted Wasserstein setting, partial discrete-time sensitivity results
were derived independently of this chapter in Bartl and Wiesel (2023) for the un-
constrained case, and in Sauldubois and Touzi (2024) for the martingale-constrained
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case. For both works, the authors took an indicator penalty L = +∞1(1,∞) and
considered a standard lp metric d̃N(x, y) = (

∑N
n=1 |xn − yn|p)1/p rather than dN given

in (5.3). We emphasize the choice is critical: while equivalent in discrete time, our
choice allows obtaining continuous time results as limits of the discrete time results.
For the martingale constraint problem in Theorem 5.18, we can formally rewrite it
as an unconstrained problem with a Lagrange multiplier:

VMart(δ) = sup
ν∈P(X )

inf
h∈Hb

{Eν [f(X)− h ◦X]− Lδ(AWp(µ, ν))},

where Hb is the set of bounded predictable processes and h ◦X denotes the discrete
stochastic integral. This formulation aligns with Bartl and Wiesel (2023, Theorem
2.4). However, Bartl and Wiesel (2023, Assumption 2.4) essentially imposes the
uniqueness of the optimizer h∗ for

inf
h∈Hb

Eµ[f(X)− h ◦X],

which is of sharp contrast to the martingale constraint problem where any h ∈ Hb is
an optimizer.

To the best of our knowledge, this is the first work that studies the continuous-
time AW-DRO sensitivity as a limit of its discrete-time counterpart. The closest
setting in continuous time is the recent work by Bartl et al. (2025b), which considers
Lp-balls around the drift and the volatility of the reference model under a strong
formulation. We discuss the link between our works in detail in Section 5.4.3 below.
Other related works, such as Herrmann and Muhle-Karbe (2017), Herrmann et al.
(2017) consider related sensitivities albeit in a more specific setup with the penalty
in (5.1) depending on the payoff in a way which makes the sensitivity universal and
independent of agent’s risk aversion.

5.1.2 Outline

The rest of the chapter is organized as follows. Section 5.2 introduces the necessary
notations and concepts. In Section 5.3, we develop the key technical tools for our
analysis, including a novel pathwise Malliavin derivative and properties of the for-
ward integral. We then present our main sensitivity results in Section 5.4, complete
with examples and a discussion of possible extensions. The proofs are detailed in the
subsequent sections: Section 5.4.4 outlines a unified framework, which is then applied
to derive the discrete-time sensitivity (Section 5.5) and the continuous-time sensitiv-
ities under hyperbolic scaling (Section 5.6.1) and parabolic scaling (Section 5.6.2).
Finally, proofs of auxiliary technical results are postponed to Section 5.7.
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5.2 Notations
Throughout the chapter, we fix N, d ≥ 1, T > 0, p > 1 and let q = p/(p − 1). We
use the generic notation 〈·, ·〉 for the scalar product, where the space is clear from the
context. We consider stochastic processes taking value in Rn and recall that we use
the notation | · | for the lp-norm on Rn, and | · |∗ for the lq-norm on Rn. In discrete-
time, we take time index I = {0, 1, . . . , N} and refer to the canonical path space as
X = {0} × (Rn)N equipped with its natural filtration; in continuous-time, we take
time index I = [0, T ] and refer to the canonical path space as X = C0([0, T ];Rn). On
the product space X ×X , we denote the first and the second coordinate processes by
X and Y . By F = (Ft)t∈I and G = (Gt)t∈I we denote the natural filtrations generated
by X and Y respectively.

Let W 1,p
0 be the Sobolev subspace of C0 equipped with the norm

‖x‖W 1,p
0

= ‖ẋ‖Lp .

Let A = (A(t))t∈I be a stochastic process. In discrete time we write

‖A‖Lq(µ) =

(
N∑

n=1

Eµ[|An|q∗]

)1/q

;

and in continuous time we write

‖A‖Lq(µ) =

(∫ T

0

Eµ[|A(t)|q∗] dt
)1/q

.

For A with EP [‖A‖∞] < ∞, we denote the optional projection of A by oA which is
the unique optional process (up to a P -null set) such that for any bounded optional
stopping time τ

oAτ = EP [Aτ |Fτ ].

We denote the predictable projection of A by pA which is the unique process (up to
a P -null set) such that for any bounded predictable stopping time τ

pAτ = EP [Aτ |Fτ−].

Note that in discrete time there are no issues with the pathwise regularity, and the
projections are simply given by

oXn = E[Xn|Fn] and pXn = E[Xn|Fn−1].
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For a multidimensional martingale M , we denote [[M ]] its matrix-valued quadratic
variation process and [M ] its trace, which we refer to as the scalar quadratic variation
process. In the sequel, we use regular martingale to refer to a continuous-time square-
integrable continuous martingale M with absolutely continuous quadratic variation.
By M (X ) we denote the space of regular martingale measures on X . By 〈·, ·〉F and
‖ · ‖F we denote the Frobenius inner product and norm respectively.

We adopt Landau symbols o and O. By o(r) we denote a quantity bounded
by l(r)r with limr→0 l(r) = 0, and by O(r) we denote a quantity bounded by l(r)r

with limr→0 l(r) < ∞. We stress that l(r) is deterministic and independent of the
underlying probability measure.

By Π(µ, ∗) we denote the set of couplings with a fixed first marginal µ. Accord-
ingly, Πc(µ, ∗) and Πbc(µ, ∗) represent the respective subsets of causal and bi-causal
couplings.

5.3 Some tools from stochastic calculus
5.3.1 Malliavin derivative

We follow Nualart (2006) to give a brief introduction to the (classical) Malliavin
calculus. We then introduce the notion of pathwise Malliavin derivative. It arises
naturally as the limit of discrete objects, and we show it coincides with the classical
version on the intersection of their domains. We believe such a pathwise approach to
Malliavin calculus can unlock many interesting results. It links with the functional Itô
calculus of Dupire (2009), Cont and Fournié (2013) and will be key to extending our
sensitivity results in continuous time to reference measures beyond the Brownian case.
We plan to pursue this direction of research in a future chapter, see also Section 5.4.3.

LetX be a d-dim Brownian motion on a filtered probability space (Ω,F , (Ft)t∈I , P ).
For a smooth cylindrical random variable F = f(

∫ T

0
〈h(t), dX(t)〉) where f ∈ C1

b and
h ∈ L2([0, T ],Rn), its Malliavin derivative DF is given by

DtF := f ′
(∫ T

0

〈h(s), dX(s)〉
)
h(t).

It is well-known that D is closable on L2(P,FX
T ). Hence, we do not distinguish D

from its closure and denote its domain by D1,2. The predictable projection of the
Malliavin derivative solves the martingale representation problem.

Theorem 5.1 (Clark–Ocone formula). Assume Z ∈ D1,2. Then we have

Z = EP [Z] +

∫ T

0

〈pDtZ, dX(t)〉.
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Malliavin derivative can be interpreted as a ‘gradient’ operator on the ‘tangent
space’, the Cameron–Martin space W 1,2

0 .

Proposition 5.2. Assume f : X → R and f(X) ∈ D1,2. Then for any η ∈ W 1,2
0 , we

have
lim
ε→0

f(X + εη)− f(X)

ε
=

∫ T

0

〈Dtf(X), η̇〉 dt P -a.s.. (5.7)

5.3.2 Pathwise Malliavin derivative

To introduce pathwise Malliavin derivative, we start with the discrete-time setup.
Recall that ∆ : X → X is the increment map given by

∆x = (0,∆x1, . . . ,∆xN) := (0, x1, x2 − x1, . . . , xN − xN−1).

Then the pathwise Malliavin derivative D = (D1, . . . ,DN) is defined as the pullback
of ∇ = (∂1, . . . , ∂N) under ∆, i.e., for any smooth f

〈Df(x), y〉 := 〈∇f(x),∆−1y〉 = 〈(∆−1)∗∇f(x), y〉, (5.8)

where (∆−1)∗ is the adjoint operator of ∆−1. Expressed explicitly, this gives

Dn =
N∑

k=n

∂k, 1 ≤ n ≤ N. (5.9)

Here, Df is an analogue of Malliavin derivative in the sense that for any deterministic
path x, y ∈ X

lim
ε→0

f(x+ εy)− f(x)

ε
= 〈Df(x),∆y〉.

In continuous-time setting, while we focus on stochastic processes with continuous
path, it is natural to first define pathwise Malliavin derivative for functionals on the
càdlàg path space D([0, T ];Rn). This approach closely aligns with the functional Itô
calculus from Cont and Fournié (2013). Proofs of results in this section are deferred
to Section 5.7.

Definition 5.3 (Pathwise Malliavin derivative). Let f : D([0, T ];Rn) → R be a
functional on the càdlàg path space. We say that f is pathwise Malliavin differentiable
if there exists Df : D([0, T ];Rn)× [0, T ] → Rd such that

〈Dtf(ω), e〉 = lim
ε→0

f(ω + εe1[t,T ])− f(ω)

ε
, ∀ω ∈ D([0, T ];Rn), e ∈ Rn.

We call Df = (Dtf)t∈[0,T ] the pathwise Malliavin derivative of f .
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Definition 5.4 (Left limit). For a functional F : [0, T ]×D([0, T ];Rn) → R, we say F
has a left limit at t ∈ [0, T ] if for any ωn converging uniformly to ω and tn increasing
to t the following limit exists

lim
n→∞

F (tn, ωn) = F (t−, ω).

Definition 5.5 (Boundedness preservation). We say a functional F : [0, T ]×D([0, T ];Rn) →
R is boundedness preserving if for any K

sup
t∈[0,T ]

sup
∥ω∥∞<K

|F (t, ω)| <∞.

Proposition 5.6. Assume f and Dtf , t ∈ I, are all continuous with respect to the
uniform topology. Then, for any simple step function η =

∑n
k=1 ek1[tk,1], we have

lim
ε→0

f(ω + εη)− f(ω)

ε
=

n∑
k=1

〈Dtkf(ω), ek〉.

If further Df has a left limit for all t ∈ [0, T ] and is boundedness preserving then, for
any path η ∈ AC0([0, T ];Rn), we have

lim
ε→0

f(ω + εη)− f(ω)

ε
=

∫ T

0

〈Dtf(ω), η̇(t)〉 dt. (5.10)

We note that (5.10) fully characterizes (up to a Lebesgue null set) the left limit
of the Malliavin derivative. This, in particular, offers us a natural way to define the
pathwise Malliavin derivative for a functional defined on the continuous path space
f : C0([0, T ];Rn) → R.

Definition 5.7. We denote D1
b the space of functionals f : C0([0, T ];Rn) → R which

admit an extension f̃ to D([0, T ];Rn) satisfying assumptions in Proposition 5.6, and
for such f we set

Dtf(ω) := Dtf̃(ω), t ∈ [0, T ], ω ∈ C0([0, T ];Rn).

We remark that Df is measurable and does not depend on the choice of the
extension f̃ as the right-hand side only depends on the values of f̃ on the continuous
path space.

Example 5.8. We give a few examples of functionals f ∈ D1
b .

1. f(ω) = g(ω(t1), . . . , ω(tn)), where g ∈ C1
b .

This gives Dtf(ω) =
∑n

k=1 ∂kg(ω(t1), . . . , ω(tn))1[0,tk].
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2. f(ω) =
∫ T

0
g(ω(t))θ(dt) where g ∈ C1

b and θ is a finite measure. This gives
Dtf(ω) =

∫ T

t
∇g(ω(s))θ(ds).

The following property shows that the classical and the pathwise Malliavin deriva-
tives agree on their common domain.

Proposition 5.9. Let X = C0([0, T ];Rn), µ the Wiener measure, and X be the
canonical process. Assume f ∈ D1

b and f(X) ∈ D1,2. Then, we have

(Dtf)(X) = Dtf(X) dµ⊗ dt–a.e..

5.3.3 Forward integral against regular martingales

Let X be a d-dim Brownian motion on a filtered probability space (Ω,F , (Ft)t∈I , P ).
The forward integration was introduced as an anticipative extension to the Itô inte-
gral, and it plays a crucial role in our sensitivity analysis. We first recall its definition.

Definition 5.10 (Russo and Vallois (1993)). Let A,B be two measurable stochastic
processes (not necessary adapted). The forward integral is given by∫ T

0

〈A(t), d−B(t)〉 = lim
ε→0

∫ T

0

1

ε
〈A(t), B((t+ ε) ∧ T )− B(t)〉 dt,

if the right hand side limit exists in probability. We say A is B forward–γ integrable
if the above limit exists in Lγ. A family {Aλ}λ∈Λ of B forward–γ integrable processes
is said to be B uniformly forward–γ integrable if

sup
λ∈Λ

∣∣∣∣∫ T

0

〈Aλ(t), d−B(t)〉 −
∫ T

0

1

ε
〈Aλ(t), B((t+ ε) ∧ T )− B(t)〉 dt

∣∣∣∣
converges to 0 in Lγ as ε goes to 0.

We focus on the case where the integrator of the forward integral is a regular
martingale. Unlike Itô integral, the expectation of a forward integral can be nonzero
as a consequence of the anticipative nature of the integrand.

Proposition 5.11. Let M be a regular martingale. We assume Φ(t) ∈ FX
T for any

t ∈ I, and Φ is M forward–1 integrable. If the right limit lims→t+ DsΦ(t) = Dt+Φ(t)

converges in L2 and sups,t∈[0,T ] ‖DsΦ(t)‖F ∈ L2, then we have

EP

[∫ T

0

〈Φ(t), d−M(t)〉
]
= EP

[∫ T

0

〈Dt+Φ(t), d[[X,M ]](t)〉F

]
,

91



Proof. By definition of the forward-1 integrability and L1 convergence, we have

EP

[∫ T

0

〈Φ(t), d−M(t)〉
]
= lim

ε→0
EP

[∫ T

0

1

ε
〈Φ(t),M((t+ ε) ∧ T )−M(t)〉 dt

]
.

By applying Clark–Ocone formula to Φ(t), we derive

EP

[∫ T

0

〈Φ(t), d−M(t)〉
]
= lim

ε→0
EP

[∫ T

0

1

ε

〈∫ T

0

pD⊺
sΦ(t) dX(s),

∫ (t+ε)∧T

t

dM(s)

〉
dt
]

= lim
ε→0

EP

[∫ T

0

1

ε

∫ (t+ε)∧T

t

〈pDsΦ(t), d[[X,M ]](s)〉F dt
]

= EP

[∫ T

0

〈pDt+Φ(t), d[[X,M ]](t)〉F

]
,

where the second line follows from the Itô isometry and Fubini theorem, and the last
line follows from the dominated convergence theorem and sups,t∈[0,T ] ‖DsΦ(t)‖F ∈ L2.
We conclude the proof by noticing [[X,M ]] is a predictable process.

We give now a stochastic Fubini theorem which details the correction term arising
from an interchange between a forward and an Itô integral. To the best of our
knowledge, this is a novel result which we believe is of independent interest. Its proof
is deferred to Section 5.7.

Theorem 5.12 (Stochastic Fubini theorem). Let γ ∈ [1, 2). Let Ψ : I×I×Ω → Rd×d,
M be a regular martingale. We assume that Ψ(s, ·) is predictable for any s ∈ I and
satisfies the following conditions:

1. {Ψ(·, t)}t∈[0,T ] is M· uniformly forward–γ integrable,

2. sups,t∈[0,T ] ‖Ψ(s, t)‖F ∈ L2γ/(2−γ),

3. limt→s+EP [‖Ψ(s, t)−Ψ(t, t)‖2F] = 0 for any s ∈ [0, T ].

Then, we have
∫ T

· Ψ(·, t)⊺ dX(t) is M· forward–γ integrable. Moreover,∫ T

0

〈∫ T

s

Ψ(s, t)⊺ dX(t), d−M(s)

〉
=

∫ T

0

〈∫ t

0

Ψ(s, t) d−M(s), dX(t)

〉
+

∫ T

0

〈Ψ(t, t), d[[X,M ]](t)〉F.
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5.4 Sensitivity of AW-DRO
With the tools developed so far, we can now give rigorous statements of our main
results on the sensitivity of AW-DRO problems to model uncertainty. We recall that
p > 1 is fixed, q = p

p−1
, and the parameterized penalty is given by Lδ(·) = δL(·/δ). We

impose the following assumption on L. The growth condition ensures that when δ goes
to 0, the adversarial distribution will converge to the reference model µ. We stress that
the proofs offer direct characterizations of the first-order optimal adversarial model
perturbations. We make this explicit only for the first theorem, see Remark 5.16. As
highlighted in (Bai et al., 2023) this can be as important as the sensitivity computation
itself.

Assumption 5.13. We assume that L : [0,+∞) → [0,+∞] is continuous, non-
decreasing, and satisfies

L(0) = 0 and lim inf
u→∞

L(u)

up
= +∞.

We write the convex conjugate of L as L∗ given by

L∗(v) = sup
u≥0

{uv − L(u)}.

5.4.1 Discrete-time results

We start with the discrete-time setting. We state and discuss the results, with the
proofs deferred to Section 5.5. Let CWp and AWp be the distances induced by the
metric

dN(x, y) =

(
N∑

n=1

|∆xn −∆yn|p
)1/p

,

and recall D is the discrete Malliavin derivative in (5.9). We consider

V (δ) = sup
ν∈P(X )

{Eν [f(X)]− Lδ(CWp(µ, ν))}. (5.11)

Assumption 5.14. We assume that f : X → R is continuously differentiable. More-
over, Df satisfies for any x ∈ X

|Df(x)| ≤ C(1 + |x|p−1). (5.12)

Theorem 5.15. Under Assumptions 5.13 and 5.14, we have

V (δ) = V (0) + Υδ + o(δ),
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where

Υ := lim
δ→0

1

δ
(V (δ)− V (0)) = L∗

Eµ

[
N∑

n=1

∣∣Eµ[Dnf(X)|Fn]
∣∣q
∗

]1/q = L∗(‖ oDf‖Lq(µ)

)
.

Remark 5.16. The first-order optimal adversarial model νδ which approximates
(5.11) for small δ is given explicitly in the proof as νδ = (Id+uδ∆−1 ◦ Φ)#µ, where
Φ is given in (5.27) and u is such that Υ = u‖ oDf‖Lq(µ) − L(u).

We now turn to the problem under martingale constraint. Let µ ∈ M (X ) and
consider

VMart(δ) = sup
ν∈M (X )

{Eν [f(X)]− Lδ(AWp(µ, ν))}.

Remark 5.17. We note that in the discrete-time setting the bi-causal and the causal
penalizations are interchangeable by Proposition 5.35. We use different penalizations
for V (δ) and VMart(δ) to be consistent with their continuous-time counterparts.

Theorem 5.18. Let Hq denote the set of predictable processes h with ‖h‖Lq(µ) <∞.

Under Assumptions 5.13 and 5.14, we have

VMart(δ) = VMart(0) + ΥMartδ + o(δ),

where

ΥMart = L∗

 inf
h∈Hq

Eµ

[
N∑

n=1

∣∣Eµ[Dnf(X)|Fn]− hn
∣∣q
∗

]1/q = L∗
(

inf
h∈Hq

‖ oDf − h‖Lq(µ)

)
.

In particular, if p = 2, we obtain

ΥMart = L∗(‖ oDf − pDf‖L2(µ)

)
.

Example 5.19. In the context of derivatives pricing in mathematical finance, the
AW-DRO sensitivity under martingale constraint can be viewed as a nonparametric
Greek. It captures the sensitivity of the option price to model uncertainty. This was
first observed in Bartl et al. (2021) in the context of perturbations of the distribution
of the underlying stock price process at a given time (the maturity). Having derived
sensitivities in a dynamic context, we can consider perturbations of the actual model
for the price process.

We consider d = 1 and a discrete-monitored Asian option whose payoff is given
by

f(X) = max
{
0, X̄ −K

}
with X̄ =

1

N + 1

N∑
n=0

Xn. (5.13)
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Figure 5.1: Comparison of the parametric sensitivity and the nonparametric sensitiv-
ity of the Asian option price under different strikes K.

Let µ ∈ M (X ) be the reference risk-neutral (pricing) measure. Without loss of
generality, we assume µ is centered, otherwise we can always shift the market by a
constant and absorb it into K. Notice that

Dnf(X) =
N + 1− n

N + 1
1{X̄≥K}.

For simplicity, we take p = 2 and L = +∞1(1,∞). By Theorem 5.18, we derive the
nonparametric ‘Greek’ of the Asian option as

ΥMart =

(
Eµ

[
N∑

n=1

|Eµ[Dnf(X)|Fn]− Eµ[Dnf(X)|Fn−1]|2
])1/2

=

(
Eµ

[
N∑

n=1

(N + 1− n)2

(N + 1)2
∣∣µ(X̄ ≥ K|Fn)− µ(X̄ ≥ K|Fn−1)

∣∣2])1/2

. (5.14)

To compare this result with a parametric sensitivity, consider µ(λ) to be the distri-
bution of a symmetric random walk with jump size ±λ, and set the reference model
as µ = µ(1), the distribution of the simple symmetric random walk. In Figure 5.1, we
compare the nonparametric sensitivity (5.14) with the parametric sensitivity to the
jump size λ. Whilst the parametric sensitivity captures the main risk, the nonpara-
metric one dominates it, as expected. Inspecting the first-order optimal adversarial
model perturbation, see (5.27), reveals that it involves both the jump size and their
symmetry being broken simultaneously.
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5.4.2 Continuous-time results

We switch now to the continuous-time setting. As before, we state and discuss the
main results, with proofs deferred to 5.6. We start with the hyperbolic scaling where
the metric d is given by

d(ω, η) = lim sup
N→∞

(
N

T

)1−1/p

dN(ω, η) =

{
‖ω − η‖W 1,p

0
if ω − η ∈ W 1,p

0 ,

+∞ elsewhere.

Assumption 5.20. Function f : X → R is in D1
b and satisfies

• |f(ω)| ≤ C(1 + ‖ω‖p∞), ω ∈ X ;

• Dtf is continuous, and |Dtf(ω)| ≤ C(1 + ‖ω‖p−1
∞ ), t ∈ [0, T ].

Remark 5.21. We recall that D1
b was introduced in Definition 5.7. Note that we do

not expect the growth of Dtf to imply a control on the growth of f . This is because
Dtf is only a directional derivative along a proper subspace of the tangent space.

Theorem 5.22. Let p > 1 and suppose Assumptions 5.13 and 5.20 hold, and that
µ ∈ P(X ) satisfies Eµ[supt∈[0,T ] |X(t)|p] < ∞. Then, with V (δ) given in (5.11), we
have

V (δ) = V (0) + Υδ + o(δ),

where
Υ = lim

δ→0

1

δ
(V (δ)− V (0)) = L∗(‖ oDf‖Lq(µ)

)
.

Remark 5.23. We point out when the reference model is the Wiener measure γ and
f(X) ∈ D1,2, the intertwining formula (Bally et al., 2016, Theorem 7.9) gives

Eγ[Df(X)|Ft] = ∇xEγ[f(X)|Ft] γ-a.s.,

where ∇x denotes the vertical derivative. Moreover, from Proposition 5.9 the Malli-
avin derivative coincides with the pointwise Malliavin derivative on their common
domain, and this leads to

Eγ[Df(X)|Ft] = Eγ[Df(X)|Ft] γ-a.s.

Therefore, we can represent the sensitivity using the vertical derivative as Υ =

L∗(‖∇xEγ[f |Ft]‖Lq(γ)). One can extend the above arguments to more general mar-
tingale reference models by taking an appropriate metric d.
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Example 5.24. We consider Merton’s (Merton, 1969) classical setting of a log in-
vestor maximizing the expected utility of their terminal wealth. The stock price
process follows the standard Black–Scholes model, with S solving

dS(t) = αS(t) dt+ σS(t) dX(t),

where X is a Brownian motion. The agent invests their wealth into the stock and a
riskless asset which grows at a constant interest rate r. Suppose their initial wealth
is κ and let θ(t) denote the proportion of their wealth invested in the risky asset at
time t, which is assumed to be predictable. Their wealth process (Kθ(t))t∈I evolves
according to

dKθ(t) = (r + λθ(t)σ)Kθ(t) dt+ σθ(t)Kθ(t) dX(t),

where λ = (α − r)/σ, known as the market price of risk, is the key market param-
eter the investor has to estimate. Merton’s problem of maximizing E[log(Kθ(T ))]

over the choice of θ is solved taking θ(t) = λ/σ, and the resulting wealth sat-
isfies K∗(T ) = κ exp((r + λ2/2)T + λX(T )). Agent’s expected utility is given by
V (0) = E[log(K∗(T ))] = log(κ)+(r+λ2/2)T and its parametric sensitivity to λ, which
captures the agent welfare’s sensitivity to the estimated parameter, is ∂

∂λ
V (0) = λT .

The general sensitivity to model uncertainty, around µ the Wiener measure, can be
computed using Theorem 5.22 for

f(X) = log(K∗(T )) = log(κ) + (r + λ2/2)T + λXT .

Taking p = 2 and L = +∞1(1,∞), we obtain Υ = λ
√
T . We see that Υ recovers the

parametric sensitivity but with a different scaling in time. Indeed,
√
T is the natural

Brownian scaling in time, and we kept the uncertainty penalty L independent of
time. If instead, we set L = +∞1(

√
T ,∞), introducing the natural Brownian scaling

into the size of the uncertainty ball considered, then we obtain Υ = λT , as before.
Naturally, the parametric sensitivity only makes sense in the specific context of Black–
Scholes price dynamics, and Υ offers its natural nonparametric extension to general
investment settings.

Example 5.25. We stress that our continuous-time sensitivity results can also go
beyond the semi-martingale framework. Consider an objective given by a pathwise
rough integral introduced in Cont and Perkowski (2019). We fix a positive integer l
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and a sequence of partitions p = {p1, p2, . . . } where pn = {0 = t0 < · · · < tin = T}.
By V2l(p), we denote the set of paths with finite 2l-variation along p in the sense that

lim
n→∞

∑
[ti,ti+1]∈pn,ti≤t

|ω(ti+1)− ω(ti)|2l = [ω](t)2l

for some continuous function [ω]2l. For any path ω ∈ V2l(p) and g ∈ C2l+1, we define
the rough integral∫ T

0

g′(ω(t)) • dω(t) := lim
n→∞

∑
[ti,ti+1]∈pn

2l−1∑
k=1

g(k)(ω(ti))

k!
(ω(ti+1)− ω(ti))

k.

Then we take f(ω) =
∫ T

0
g′(ω(t)) • dω(t) and the reference measure as the law of the

fractional Brownian motion with Hurst parameter H = 1/2l. By Cont and Perkowski
(2019, Theorem 1.5), we notice

Eµ[f(X)] = Eµ

[
g(X(T ))− g(X(0))− 1

(2l)!

∫ T

0

g(2l)(X(s)) d[X]2l(s)

]
= Eµ

[
g(X(T ))− g(X(0))− Eµ[|X(1)|2l]

(2l)!

∫ T

0

g(2l)(X(s)) ds
]
.

For simplicity, we take d = 1, p = 2, and L = +∞1(1,∞). Therefore, by Theorem 5.22,
we derive

Υ = Eµ

∫ T

0

∣∣∣∣∣Eµ

[
g′(X(T ))− Eµ[|X(1)|2l]

(2l)!

∫ T

t

g(2l+1)(X(s)) ds
∣∣∣∣∣Ft

]∣∣∣∣∣
2

dt

1/2

.

As mentioned in the introduction, the hyperbolic scaling is not critical for the
martingale constraint problem since, by Doob’s decomposition theorem, the difference
between two martingales is of infinite variation. This gives an infinite transport cost
under hyperbolic scaling, i.e., martingale measures are a ‘totally disconnected’ set:

Remark 5.26. Let p > 1 and µ ∈ M (Ω) satisfy Eµ[supt∈[0,T ] |X(t)|p] < ∞. If a
martingale measure ν ∈ M (Ω) satisfies CWp(µ, ν) <∞, then µ = ν.

As a consequence, we have to zoom out the scaling. Put differently, we need a
metric which allows us to alter the quadratic variation of the path. We focus on the
case p = 2 and the reference measure µ being the Wiener measure, leaving the general
case for future studies. Adopting a parabolic scaling, we formally set d as

d(ω, η) = lim sup
N→∞

dN(ω, η) =
√

[ω − η]T .
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Remark 5.27. Consider formally taking continuous limit of ΥMart in Theorem 5.18
for p = 2:

lim
N→∞

L∗

Eµ

[
N∑

n=1

∣∣Eµ[DnT/Nf(X)|FnT/N ]− Eµ[DnT/Nf(X)|F(n−1)T/N ]
∣∣2
∗

]1/2
= lim

N→∞
L∗

Eµ

[
N∑

n=1

∫ nT/N

(n−1)T/N

‖Eµ[DtDnT/Nf(X)|Ft]‖2F dt
]1/2

≈ L∗

(
Eµ

[∫ T

0

‖Eµ[DtDt+f(X)|Ft]‖2F dt
]1/2)

,

where we apply the Clark–Ocone formula in the second line and denote the Frobenius
norm by ‖ · ‖F. Surprisingly, this limit does not always coincide with ΥMart for some
objectives of our interest such as f(X) = 1

2
[X]T . If the above limit were true, we

would have ΥMart = L∗(0) = 0 since Dtf(X) = 0 for any t ∈ [0, T ]. However, a direct
computation shows that ΥMart = L∗(

√
T ).

Motivated by the above remark, we consider objective functionals f of the form
f(ω) = U

(∫ T

0
〈h(t, ω(· ∧ t)), dω(t)〉

)
.

Assumption 5.28. We assume that h : I × X → Rn is continuous, bounded, and
U ∈ C2 with a bounded second derivative. There exists γ ∈ (1, 2) such that under
any π ∈ Πbc(µ, ∗) with π(X × ·) ∈ M (X ) the following holds:

• Eπ[supt∈[0,T ] |h(t,X(· ∧ t))− h(t, Y (· ∧ t))|2] = o(Eπ[[X − Y ]T ]
1/2).

• Eπ

[
supt∈[0,T ] |h(t, Y (·∧ t))−h(t,X(·∧ t))−

∫ t

0
D⊺

sh(t,X(·∧ t)) d−(Y −X)(s)|γ
]

= o(Eπ[[X − Y ]T ]
γ/2).

• {Dh(t,X(· ∧ t))}t∈[0,T ] is (Y −X) uniformly forward–γ integrable.

• sups,t∈[0,T ] ‖Dsh(t,X(· ∧ t))‖F ∈ L2γ/(2−γ).

• limt→s+Eπ[‖Dsh(t,X(· ∧ t))− Dth(t,X(· ∧ t))‖2F] = 0 for any s ∈ [0, T ].

• For H =
∫ T

0
〈h(t,X(· ∧ t)), dX(t)〉, Ds+H = limt→s+ DtH and Ds+DsH =

limt→s+ DtDsH both converge in L2 for any s ∈ [0, T ].

Remark 5.29. We remark that d and f can be defined in a pathwise sense. By
Karandikar (1995, Theorem 3) there exists a map q : X → R such that q(ω) = [ω]T
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holds almost surely under any martingale measure µ. This allows us to interpret
d : X × X → R as d(ω, η) := q(ω − η). In particular, under any bi-causal coupling π
between martingale measures, we have the desired identity

d(X,Y ) = q(X − Y ) = [X − Y ]T π-a.s.

Similarly, under Assumption 5.28, h is continuous and by Karandikar (1995, Theorem
3) there exists f : X → R such that for any martingale measure µ

f(X) = U

(∫ T

0

〈h(t,X(· ∧ t)), dX(t)〉
)

µ-a.s.

Theorem 5.30. Take p = 2 and let µ be the Wiener measure. Let Assumptions 5.13
and 5.28 hold, and denote H =

∫ T

0
〈h(t,X(· ∧ t)), dX(t)〉. Recall

VMart(δ) = sup
ν∈M (X )

{Eν [U(H)]− Lδ(AW2(µ, ν))}. (5.15)

Then, we have
VMart(δ) = VMart(0) + ΥMartδ + o(δ),

where

ΥMart = L∗

(
Eµ

[∫ T

0

‖φ(t)‖2F dt
]1/2)

(5.16)

and
φ(s) =

p{Ds+DsU(H)− U ′(H)D⊺
sh(s,X(· ∧ s))}. (5.17)

Example 5.31. Let σ ∈ C1,2
b . Then h(t, ω) = σ(t, ω(t)) satisfies Assumption 5.28.

The first condition follows from BDG inequality and the boundedness of ∂xσ. For the
second one, we notice that Dsh(t,X(· ∧ t)) = ∂xσ(t,X(t))1s≤t. The estimate follows
from Taylor expansion and BDG inequality by noticing∣∣∣∣h(t, Y (· ∧ t))− h(t,X(· ∧ t))−

∫ t

0

D⊺
sh(t,X(· ∧ t)) d−(Y −X)(s)

∣∣∣∣
= |σ(t, Y (t))− σ(t,X(t))− 〈∂xσ(t,X(t)), (Y (t)−X(t))〉| ≤ C|Y (t)−X(t)|1+ε,

for some ε ∈ (0, 1). Taking γ = 2/(1 + ε), we obtain the required estimate. For the
third condition, we notice

∫ T

0
Dsh(t,X(· ∧ t)) d−(Y − X)(s) = ∂xσ(t,X(t))(Y (t) −

X(t)) and uniform forward integrablity follows from the boundedness of ∂xσ. The
fourth condition is again satisfied by the boundedness of ∂xσ. The fifth condition
is a consequence of the continuity and the boundedness of ∂xσ. The last condition
follows from the fact that DtH = σ(t,X(t)) +

∫ T

t
∂xσ(r,X(r)) dX(r) and DtDsH =

∂xσ(t,X(t)) +
∫ T

t
∂2xσ(r,X(r)) dX(r) for t ≥ s.
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Example 5.32. We continue the theme of Example 5.19 and explore a nonparametric
Greek for option pricing in a continuous time setting. Suppose the price process
follows

dS(t) = S(t)σ(t,X(t)) dX(t),

where X is a Brownian motion under the reference measure µ and σ ∈ C1,2
b . The

payoff of a log contract is given by − log(S(T )/S(0)) and Itô’s formula gives its price
as

Eµ[− log(S(T )/S(0))] = Eµ

[
1

2

∫ T

0

σ(t,X(t))2 d[X](t)

]
= Eµ

[
1

2

(∫ T

0

σ(t,X(t)) dX(t)

)2
]
.

We take L = +∞1(1,∞) and applying Theorem 5.30, noting its assumptions are
satisfied by Example 5.31, calculate the nonparametric ‘Greek’ of a log contract as

ΥMart = Eµ

[∫ T

0

|φ(t)|2 dt
]1/2

,

where

φ(s) =

p{
Ds+Ds

(
1

2

(∫ T

0

σ(t,X(t)) dX(t)

)2
)

−
∫ T

0

σ(t,X(t)) dX(t)∂xσ(s,X(s))

}

= σ(s,X(s))2 +

∫ T

s

Eµ

[
(∂xσ(t,X(t)))2 + σ(t,X(t))∂2xσ(t,X(t))

∣∣∣Fs

]
dt.

If σ is constant then the price of the log contract is given by p(σ) := 1
2
σ2T while the

above formula gives ΥMart = σ2
√
T . The difference in scaling in time comes from

two factors: one is similar to what we saw in Example 5.24 above, the other is due σ
being the annualized volatility, while ΥMart is not annualized. To wit, note that a δ
perturbation of the underlying Brownian motion, X to (1+ δ)X corresponds to

√
Tδ

causal perturbation whilst changing the log contract price from p(σ) to p(σ(1 + δ)).
Thus, the sensitivity to log contract price corresponding to ΥMart is

lim
δ→0

1

2

σ2(1 + δ/
√
T )2T − σ2T

δ
= σ2

√
T .

In general, taking time scaling into the account, we would expect p′(σ) ≤
√
T
σ
ΥMart

and the fact that we actually have equality shows that, up to the first order, the worst
adversarial change to the dynamics comes from a constant shift to σ. Finally, we note
that, as in Example 5.24, we could take L = +∞1(

√
T/σ,∞) leading to ΥMart = σT =

p′(σ).
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5.4.3 Extensions and further results
Filtrations in discrete time

In Theorem 5.15, we work with the canonical filtration F. This was taken for ease
of notation and to mimic the continuous time results. We can extend our result to
any enlarged filtration F̃, and following the same lines of arguments the sensitivity
is again given by Υ = L∗(‖ oDf‖Lq(µ)

)
, where the optional projection is with respect

to F̃. The notion of causality introduced in Section 5.2 is easily transferred to this
setting, see Acciaio et al. (2020) for more details. In particular, if we equip the
reference model with the largest filtration, i.e., F̃t = F for any t ∈ I, then any
coupling is a causal coupling. Under such an extended setting, we retrieve the static
Wasserstein sensitivity (Bartl et al., 2021) as a specific corollary of Theorem 5.15.

Weak OT objective in discrete time

Another extension is to consider an optimal stopping problem

VOS(0) = sup
τ∈T

Eµ[g(Xτ )],

and its distributionally robust counterpart

VOS(δ) = sup
ν∈P(X )

{
sup
τ∈T

Eν [g(Xτ )]− Lδ(AWp(µ, ν))

}
,

where T is the set of (Ft)–stopping time. The dual representation for VOS(δ) is
discussed in Jiang (2024). For simplicity, we focus on the two-period case, and by
Snell’s envelope we notice

sup
τ∈T

Eν [g(Xτ )] = Eν [max{g(X1), Eν [g(X2)|X1]}] = Eν [f(X1,Law(X2|X1))].

In this case, the objective f : X1 × P(X2) → R is a functional not only of the state
but also of the conditional law of the state. Such problems are referred to as Weak
OT and were studied in Gozlan et al. (2017). For this two-period setting, it can be
shown that

ΥOS := lim
δ→0

(VOS(δ)− VOS(0))/δ = L∗(‖(∂xf, ∂µf)‖Lq(µ)

)
,

where ∂µ is Lion’s derivative, suitably adjusted to the change of coordinates by ∆.
However, to the best of our knowledge, the general N -period case remains open.
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Semi-martingale ambiguity in continuous time

Our results can be extended to a framework where the ambiguity set is the set of
semi-martingales around the reference model. In order to allow both the drift and
the volatility ambiguity, we need to decompose the semi-martingale into its finite-
variation and its martingale part. For a process X, we write X = Xa + Xm for its
Doob’s decomposition. We adopt the objective in Theorem 5.18:

f(X) = U(H), where H =

∫ T

0

〈h(t,X(· ∧ t)), dX(t)〉.

Let d = 1, p = 2, µ be the Wiener measure and consider the DRO problem given by

VS.Mart(δ) = sup
ν∈Bδ

Eν [U(H)],

where Bδ = Ba
δ ∩ Bm

δ is the intersection of two bi-causal balls given by

Ba
δ =

{
ν ∈ S (X ) : inf

π∈Πbc(µ,ν)
Eπ

[
‖Xa − Y a‖W 1,2

0

]
≤ δ

}
and

Bm
δ =

{
ν ∈ S (X ) : inf

π∈Πbc(µ,ν)
Eπ[[X

m − Y m]T ]
1/2 ≤ δ

}
.

Here S (X ) denotes the set of semi-martingale measures. In order to apply Theo-
rem 5.22, a pathwise definition of the Itô integral is needed. For instance, we can
adapt the approach in Example 5.25, and consider the objective of the form of

f(ω) = U

(∫ T

0

g′(ω(t)) dω(t)
)

= U

(
g(ωT )− g(0)− 1

2

∫ T

0

g′′(ω(s)) d[ω](s)
)
.

We claim that

Eπ[f(Y )− f(X)]

= Eπ[f(X + (Y −X)a + (Y −X)m)− f(X)]

= Eπ[f(X + (Y −X)a)− f(X)] + Eπ[f(X + (Y −X)m)− f(X)] + o(δ)

= Eπ

[∫ T

0

〈oDf(t)(X), d(Y −X)(t)a〉
]
+ Eπ

[∫ T

0

〈φ(t), d[[X, (Y −X)m]](t)〉
]
+ o(δ),

(5.18)

where φ is given in (5.17), and where the second equality follows by controlling the
higher order terms combining the arguments in the proofs of Theorems 5.22 and 5.30,
and we omit the details. It follows that

ΥS.Mart = Υ+ΥMart. (5.19)
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This result allows us to detail the relation between our results and the recent work of
Bartl et al. (2025a). Therein, the authors consider Lp-balls around the drift and the
volatility of the reference model under a strong formulation. We adapted their results
to the semi-martingale framework as follows. Let (Ω,F , (Ft), P ) be a probability
space supporting a Brownian motion W . Consider a DRO problem given by

ṼS.Mart(δ) = inf
h∈H

sup
(b,σ)∈B̃δ

EP

[
U

(∫ T

0

h(t) dXb,σ(t)

)]
,

where H is a set of predictable open-loop controls, X(t)b,σ =
∫ t

0
b(s) ds+

∫ t

0
σ(s) dW (s),

and

B̃δ =

(b, σ) : EP

[∫ T

0

|b(t)− b̄(t)|p dt
]1/p

≤ δ, EP

[(∫ T

0

|σ(t)− σ̄(t)|2 dt
)p/2

]1/p
≤ δ

,
thus an intersection of Lp-balls around the drift and volatility coefficients. Bartl et al.
(2025b) shows that

Υ̃S.Mart = EP

[(∫ T

0

|Y (t)h∗(t)|q∗ dt
)]1/q

+ EP

[(∫ T

0

|Z(t)h∗(t)|2 dt
)q/2

]1/q
, (5.20)

where h∗ is the unique optimal control of the reference model and (Y, Z) is the solution
to the BSDE:

Y (t) = U ′
(∫ T

0

h∗(t) dX(t)b̄,σ̄
)
−
∫ T

t

Z(s) dW (s), t ∈ [0, T ].

Notice that in our framework we do not specify a probability space, and hence we
only consider feedback (closed-loop) controls h. The intersection between the two
settings is obtained taking b̄ = 0, σ̄ = Id and H = {h} for some deterministic control
h. While (5.20) was obtained only for p > 3, we find that (5.20) coincides with
(5.19) by plugging p = 2. Roughly speaking, this indicates that the volatility ball B̃δ,
while more rigid, is actually equivalent to the bi-causal ball Bδ up to the first order
approximation.

Remark 5.33. Above, we took an intersection of a drift ball and a volatility ball to
obtain a direct comparison with Bartl and Wiesel (2023). However, from the causal-
OT point of view, it is more natural to allow a trade-off between the two types of
perturbations and to combine them into one cost function. This leads us to consider
the bi-causal discrepancy given by

AW2(µ, ν) := inf
π∈Πbc(µ,ν)

Eπ

[
‖Xa − Y a‖2

W 1,2
0

+ [Xm − Y m]T

]1/2
.
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The corresponding DRO problem is given by

VS.Mart(δ) = sup
ν∈S (X )

{Eν [U(H)]− Lδ(AW2(µ, ν))}.

For simplicity, consider L = +∞1(1,∞) as above. Combing the first order approxima-
tion (5.18) with the Cauchy inequality, in this setting one can derive

ΥS.Mart =
√

Υ2 +Υ2
Mart.

5.4.4 A general strategy of the proof

We present a key elementary lemma which provides a unified framework for the
proofs. An upper bound of the sensitivity is given by estimates (5.21) and (5.22).
A lower bound of the sensitivity is a consequence of the estimate (5.23). In the
following proofs, we will verify all three estimates respectively in each case. The
growth estimate (5.21) will follow from the growth assumption of f . Estimate (5.22)
is an asymptotic estimate when the cost is small and is will be derived from the Hölder
inequality or the Kunita–Watanabe inequality. For estimate (5.23), we will construct
a sequence of couplings which attain the inequality in (5.22) asymptotically.

Lemma 5.34. Let P ⊆ Π(µ, ∗) be a given set of couplings and d a metric such that
the following conditions hold: there exists a constant C such that for any π ∈ P

Eπ[f(Y )] ≤ C(1 + Eπ[d(X,Y )p]), (5.21)

there exists r such that for any π ∈ P

Eπ[f(Y )− f(X)] ≤ rEπ[d(X,Y )p]1/p + o(Eπ[d(X,Y )p]1/p), (5.22)

and for all δ > 0 small enough, there exists πδ ∈ P such that Eπδ
[d(X,Y )p] ≤ upδp

and
Eπδ

[f(Y )− f(X)] ≥ ruδ + o(δ), (5.23)

where u is given by ur − L(u) = L∗(r). Then under Assumption 5.13, we have

sup
π∈P

{
Eπ[f(Y )− f(X)]− Lδ(Eπ[d(X,Y )p]1/p)

}
= L∗(r)δ + o(δ).

Proof. Since L satisfies lim infu→∞
L(u)
up = +∞, there exists M1 and C1 > C such that

Lδ(u) > C1δ
1−pup for any δ < 1 and u > M1. Combined with (5.21), we see that for

any δ < 1 we can restrict to measures with uniformly bounded costs

sup
π∈P

{
Eπ[f(Y )− f(X)]− Lδ(Eπ[d(X,Y )p]1/p)

}
(5.24)

= sup
π∈Q

{
Eπ[f(Y )− f(X)]− Lδ(Eπ[d(X,Y )p]1/p)

}
,
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where Q = P ∩ {π : Eπ[d(X,Y )p] ≤M1}. By (5.22), for π ∈ Q we have

Eπ[f(Y )− f(X)] ≤ C2Eπ[d(X,Y )p]1/p,

for some constant C2. Again by the growth assumption of L, there exists M2 > 1

such that Lδ(u) > C2δ
1−pup for any δ < 1 and u > M2. Then on the set of {π ∈ Q :

Eπ[d(X,Y )p] > Mp
2 δ

p} it holds that

Eπ[f(Y )− f(X)]− Lδ(Eπ[d(X,Y )p]1/p) ≤ C2Eπ[d(X,Y )p]1/p − C2δ
1−pEπ[d(X,Y )p]

≤ C2Eπ[d(X,Y )p]1/p[1− (Eπ[d(X,Y )p]1/p/δ)p−1] < 0.

Therefore, by taking Pδ = {π ∈ Q : Eπ[d(X,Y )p] ≤ Mp
2 δ

p}, we obtain the desired
estimate from (5.22)

sup
π∈P

{
Eπ[f(Y )− f(X)]− Lδ(Eπ[d(X,Y )p]1/p)

}
= sup

π∈Pδ

{
Eπ[f(Y )− f(X)]− Lδ(Eπ[d(X,Y )p]1/p)

}
≤ sup

π∈Pδ

{
rEπ[d(X,Y )p]1/p − δL(Eπ[d(X,Y )p]1/p/δ) + o(δ)

}
≤ L∗(r)δ + o(δ).

On the other hand, taking u such that ur − L(u) = L∗(r) and πδ in (5.23), we
obtain the other inequality, and hence the desired equality:

sup
π∈Pδ

{
Eπ[f(Y )− f(X)]− Lδ(Eπ[d(X,Y )p]1/p)

}
≥ ruδ − δL(u) + o(δ) = δL∗(r) + o(δ).

5.5 Proofs of discrete-time results
Proof of Theorem 5.15. It is clear by definition that

V (δ) = sup
π∈Πc(µ,∗)

{
Eπ[f(Y )]− Lδ(Eπ[dN(X,Y )p]1/p)

}
.

By Lemma 5.34 it suffices to verify (5.21), (5.22) and (5.23) with P = Πc(µ, ∗) and

r = Eµ

[
N∑

n=1

∣∣Eµ[Dnf(X)|Fn]
∣∣q
∗

]1/q
= ‖ oDf‖Lq(µ).
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We derive (5.21) by noticing f(y) ≤ C(1 + |x|p + |x− y|p). Let π ∈ Πc(µ, ∗), and we
notice by Hölder inequality

Eπ[f(Y )− f(X)] =

∫ 1

0

Eπ[〈Df(X + λ(Y −X)),∆Y −∆X〉] dλ

=

∫ 1

0

Eπ[〈oDf(X + λ(Y −X)),∆Y −∆X〉] dλ

≤ Eπ[dN(X,Y )p]1/p
∫ 1

0

‖ oDf(X + λ(Y −X))‖Lq(π) dλ.

In order to verify (5.22), we need to show that for any πn with limn→∞Eπn [dN(X,Y )p] =

0, it holds that

lim sup
n→∞

∫ 1

0

‖ oDf(X + λ(Y −X))‖Lq(πn) dλ ≤ ‖ oDf(X)‖Lq(µ). (5.25)

Notice that limn→∞Eπn [dN(X,Y )p] = 0 implies the convergence of πn to the identical
coupling π̃ = (Id, Id)#µ in p-Wasserstein distance. Therefore, by Assumption 5.14
and Jensen inequality, for any λ ∈ [0, 1], we obtain

lim sup
n→∞

‖ oDf(X + λ(Y −X))− oDf(X)‖Lq(πn)

≤ lim sup
n→∞

‖Df(X + λ(Y −X))− Df(X)‖Lq(πn)

= ‖Df(X + λ(Y −X))− Df(X)‖Lq(π̃) = 0.

Assumption 5.14 and dominated convergence theorem now give the desired inequality:

lim sup
n→∞

∫ 1

0

‖ oDf(X + λ(Y −X))‖Lq(πn) dλ ≤ lim sup
n→∞

‖ oDf(X)‖Lq(πn)

= ‖ oDf‖Lq(µ),

where in the last equality, we used the fact that Eπn [Dnf(X)|Fn⊗Gn] = Eµ[Dnf(X)|Fn]

since πn ∈ Πc(µ, ∗).
It remains to verify (5.23). We introduce v : Rn → Rn given by

v(e) = (e1|e1|q−2, . . . , ed|ed|q−2). (5.26)

We fix u > 0 and let πδ = (Id, Id+uδ∆−1 ◦ Φ)#µ where

Φn(X) = v(Eµ[Dnf(X)|Fn]), for n = 1, . . . , N. (5.27)

By construction, πδ ∈ Πc(µ, ∗). We compute, using pq − p = q,

Eπδ
[dN(X,Y )p] = upδpEµ

[
N∑

n=1

|Φn(X)|p
]
=
(
u‖ oDf‖q/pLq(µ)

)p
δp.
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On the other hand, by the fundamental theorem of calculus and the definition of D
in (5.8), we have

Eπδ
[f(Y )− f(X)] = Eµ[f(X + uδ∆−1 ◦ Φ(X))− f(X)]

= uδ

∫ 1

0

Eµ[〈Df(X + λuδ∆−1 ◦ Φ(X)),Φ(X)〉] dλ.

Using the assumed growth estimates we can apply dominated convergence theorem,
and taking conditional expectations, we see that the term under the integral, for any
fixed λ, converges to ‖ oDf‖qLq(µ) as δ → 0, and hence

Eπδ
[f(Y )− f(X)] = ‖ oDf‖Lq(µ)

(
u‖ oDf‖q/pLq(µ)

)
δ + o(δ).

If r = ‖ oDf‖Lq(µ) > 0 then above estimate is equivalent to (5.23), where we take
u such that L∗(r) = ur − L(u). If ‖ oDf‖Lq(µ) = 0, then the first part has already
implied the sensitivity Υ = L∗(0) = 0.

In discrete-time setting, (Bartl and Wiesel, 2023, Lemma 3.1) shows bi-causal
couplings Πbc(µ, ∗) are dense in the set of causal couplings Πc(µ, ∗). The proof imme-
diately adapts if instead of couplings we consider transport maps. Here, we observe
that both also extend to the setting under a martingale constraint. We state the
results for maps as this is the version we need for the proof of Theorem 5.18. The
proof is deferred to Section 5.7.

Proposition 5.35. Let X = {0} × (Rn)N , µ ∈ P(X ) and π = (Id,Φ)#µ ∈ Πc(µ, ∗).
Then for any ε > 0, there exists Φε such that ‖Φ − Φε‖∞ < ε and (Id,Φε)#µ ∈
Πbc(µ, ∗). Moreover, if µ,Φ#µ ∈ M (X ) then Φε can be taken such that Φε

#µ ∈ M (X ).

Proof of Theorem 5.18. Notice that

VMart(δ) = sup
π∈Πbc(µ,∗),π(X ,·)∈M (X )

{Eπ[f(Y )]− Lδ(Eπ[dN(X,Y )])}.

By Lemma 5.34, it suffices to verify (5.21), (5.22) and (5.23) with P = {π ∈ Πbc(µ, ∗) :
π(X × ·) ∈ M (X )} and

r = inf
h∈Hq

Eµ

[
N∑

n=1

∣∣Eµ[Dnf |Fn]− hn
∣∣q
∗

]1/q
= inf

h∈Hq
‖ oDf − h‖Lq(µ),

where Hq is the set of predictable functionals in Lq. Estimate (5.21) follows directly
from the unconstrained case. Let π ∈ P and h ∈ Hq ∩ C2

b . We notice by Hölder
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inequality

Eπ[f(Y )− f(X)] =

∫ 1

0

Eπ[〈Df(X + λ(Y −X)),∆Y −∆X〉] dλ

=

∫ 1

0

Eπ[〈oDf(X + λ(Y −X))− h(X),∆Y −∆X〉] dλ

≤ Eπ[dN(X,Y )p]1/p
∫ 1

0

‖ oDf(X + λ(Y −X))− h(X)‖Lq(π) dλ.

Here, the second equality follows from π ∈ Πbc(µ, ∗) and Proposition 5.37. Following
the arguments used in the proof of Theorem 5.15, noting h is bounded, we derive

Eπ[f(Y )− f(X)] ≤ Eπ[dN(X,Y )p]1/p‖ oDf − h‖Lq(µ) + o(Eπ[dN(X,Y )p]1/p).

We verify (5.22) by noticing

inf
h∈Hq∩C2

b

‖ oDf − h‖Lq(µ) = inf
h∈Hq

‖ oDf − h‖Lq(µ).

We turn to showing (5.23). For h∗ we denote the Lq predictable projection of oDf ,
i.e., the unique optimizer of

inf
h∈H

J [h] = inf
h∈H

‖ oDf − h‖qLq(µ). (5.28)

We use v as defined in (5.26) and define Φ = (0,Φ1, . . . ,ΦN) : X → X where

Φn(X) = v(Eµ[Dnf(X)|Fn]− h∗n) for n = 1, . . . , N.

The first variation of (5.28) yields for any g ∈ Hq

δJ [h∗](g) = lim
ε→0

1

ε
(J [h∗ + εg]− J [h∗]) = qEµ[〈Φ(X), g〉] ≥ 0,

which implies that
Eµ[Φn(X)|Fn−1] = 0. (5.29)

We fix u > 0 and let πδ = (Id, Id+uδ∆−1 ◦ Φ(X))#µ. A direct computation yields

Eπδ
[dN(X,Y )p] =

(
u‖ oDf − h∗‖q/pLq(µ)

)p
δp.

On the other hand, we have

Eπδ
[f(Y )− f(X)] = Eµ[f(X + uδ∆−1 ◦ Φ(X))− f(X)]

= uδ

∫ 1

0

Eµ[〈Df(X + λuδ∆−1 ◦ Φ(X)),Φ(X)〉] dλ.
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Since f satisfies Assumption 5.14, the dominated convergence theorem gives

lim
δ→0

∫ 1

0

Eµ[〈Df(X + λuδ∆−1 ◦ Φ(X)),Φ(X)〉] dλ

= Eµ[〈Df(X),Φ(X)〉]

= Eµ[〈oDf − h∗,Φ〉] = ‖ oDf − h∗‖qLq(µ),

where the second equality is a consequence of (5.29). This implies that

Eπδ
[f(Y )− f(X)] = ‖ oDf − h∗‖Lq(µ)

(
u‖ oDf − h∗‖q/pLq(µ)

)
δ + o(δ). (5.30)

The proof would be complete if we were able to show that the constructed πδ ∈ P . By
(5.29), indeed the second marginal of πδ is a martingale measure. But, in general πδ
may not be a bi-causal coupling. Instead, by Proposition 5.35, we can approximate πδ
by a bi-causal coupling π̃δ ∈ P . Assumption 5.14 ensures that taking ε small enough,
e.g., ε = δ2, the estimate (5.30) still holds if we replace πδ with π̃δ. This concludes
the proof.

5.6 Proofs of continuous-time results
5.6.1 Hyperbolic scaling

Proof of Theorem 5.22. Recall that X = C0([0, T ];Rn). By Lemma 5.34, it suffices
to verify (5.21), (5.22) and (5.23) with P = Πc(µ, ∗) and

r =

(∫ T

0

Eµ[| oDtf(X)|q∗] dt
)1/q

= ‖ oDf‖Lq(µ).

We notice that (5.21) follows from

|f(y)| ≤ C(1 + ‖y‖p∞) ≤ C(1 + ‖x‖p
W 1,p

0

+ ‖x− y‖p
W 1,p

0

).

Without loss of generality, we may assume Eπ[d(X,Y )p] <∞. As we assume f ∈ D1
b ,

by Proposition 5.6 it holds

Eπ[f(Y )− f(X)] = Eπ

[∫ 1

0

∫ T

0

〈Dtf(X + λ(Y −X)), (X − Y )′(t)〉 dt dλ
]
.
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In particular, we can choose a version of (X−Y )′ such that it is adapted to (Ft⊗Gt)t∈I .
Therefore, applying Hölder inequality we deduce

Eπ[f(Y )− f(X)] = Eπ

[∫ 1

0

∫ T

0

〈Dtf(X + λ(Y −X)), (X − Y )′(t)〉 dt dλ
]

= Eπ

[∫ 1

0

∫ T

0

〈oDtf(X + λ(Y −X)), (X − Y )′(t)〉 dt dλ
]

≤ Eπ[d(X,Y )p]1/p
∫ 1

0

‖ oDf(X + λ(Y −X))‖Lq(π) dλ.

In order to verify (5.22), it suffices to show that for any sequence πn ∈ P with
limn→∞Eπn [d(X,Y )p] = 0 it holds

lim sup
n→∞

∫ 1

0

‖ oDf(X + λ(Y −X))‖Lq(πn) dλ ≤ ‖ oDf‖Lq(µ). (5.31)

Since ‖·‖∞ is dominated by ‖·‖W 1,p
0

and Df is continuous with respect to the uniform
topology, following the same arguments as for (5.25) in the proof of Theorem 5.15 we
deduce (5.31). It remains to establish (5.23). We define Φ : X → AC0([0, T ];Rn) as

Φt(X) =

∫ t

0

v(oDsf(X)) ds,

where v : Rn → Rn is, as previously, given by (5.26). We fix u > 0 such that
L∗(r) = ur − L(u). For any δ > 0, we construct πδ = (Id, Id+uδΦ)#µ. Since Φ is
adapted, we have πδ ∈ Πc(µ, ∗). A direct computation gives

Eπδ
[d(X,Y )p] = upδpEµ

[∫ T

0

|v(oDtf(X))|p dt
]
=
(
u‖ oDf‖q/pLq(µ)

)p
δp.

By Proposition 5.6, with η = Φ(X) and noting η̇t = v(oDtf(X)), we derive

Eπδ
[f(Y )− f(X)] = Eµ[f(X + uδΦ(X))− f(X)]

= uδ

∫ 1

0

∫ T

0

Eµ[〈Dtf(X + λuδΦ(X)), v(oDtf(X))〉] dt dλ.

By Assumption 5.20 and dominated convergence theorem, as δ → 0, we have

lim
δ→0

∫ 1

0

∫ T

0

Eµ[〈Dtf(X + λuδΦ(X)), v(oDtf(X))〉] dt dλ =

∫ T

0

Eµ[| oDtf(X)|q] dt.

This implies that

Eπδ
[f(Y )− f(X)] = ‖ oDf‖Lq(µ)

(
u‖ oDf‖q/pLq(µ)

)
δ + o(δ),

and hence (5.23) holds.
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5.6.2 Parabolic scaling

In the proofs that follow, in a chain of inequalities, C may denote a different constant
from one line to another. Recall that

VMart(δ) = sup
ν∈M (X )

{Eν [U(H)]− Lδ(AW2(µ, ν))},

where H =
∫ T

0
〈h(t,X(· ∧ t)), dX(t)〉.

Lemma 5.36. Let Assumption 5.28 hold. Then, for any π ∈ Πbc(µ, ∗) with π(X×·) ∈
M (X ) we have

Eπ

[
U

(∫ T

0

〈h(t, Y (· ∧ t)), dY (t)〉
)
− U

(∫ T

0

〈h(t,X(· ∧ t)), dX(t)〉
)]

= Eπ

[
U ′(H)

∫ T

0

〈h(t,X(· ∧ t)), d(Y −X)(t)〉
]

+ Eπ

[∫ T

0

〈∫ t

0

D⊺
sh(t,X(· ∧ t)) d−(Y −X)(s), dX(t)

〉]
+ o
(
Eπ[[X − Y ]T ]

1/2
)
.

Proof. Since π is bi-causal coupling between martingale measures, by Proposition 5.37
we have (X,Y ) is a joint martingale under π. By Assumption 5.28 and Itô isometry,
we notice

Eπ

[∣∣∣∣∫ T

0

〈h(t, Y (· ∧ t)), dY (t)〉 −
∫ T

0

〈h(t,X(· ∧ t)), dX(t)〉
∣∣∣∣2
]

≤ CEπ

[∣∣∣∣∫ T

0

〈h(t, Y (· ∧ t)), d(X − Y )(t)〉
∣∣∣∣2
]

+ CEπ

[∣∣∣∣∫ T

0

〈h(t,X(· ∧ t))− h(t, Y (· ∧ t)), dX(t)〉
∣∣∣∣2
]

≤ CEπ

[
[X − Y ]T sup

t∈[0,T ]

|h(t, Y (· ∧ t))|2
]

+ CEπ

[
[X]T sup

t∈[0,T ]

|h(t,X(· ∧ t))− h(t, Y (· ∧ t))|2
]

= o(Eπ[[X − Y ]T ]
1/2),

where in the last step, we use the fact that h is bounded and [X]T = T . Since U has
a bounded second derivative, we have

|U(y)− U(x)− U ′(x)(y − x)| ≤ C|y − x|2.
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Together with the previous estimate, this implies that

Eπ

[
U

(∫ T

0

〈h(t, Y (· ∧ t)), dY (t)〉
)
− U

(∫ T

0

〈h(t,X(· ∧ t)), dX(t)〉
)]

= Eπ

[
U ′(H)

(∫ T

0

〈h(t, Y (· ∧ t)), dY (t)〉 −
∫ T

0

〈h(t,X(· ∧ t)), dX(t)〉
)]

+ o(Eπ[[X − Y ]T ]
1/2).

For simplicity, we write

I1 =

∫ T

0

〈h(t,X(· ∧ t)), d(Y −X)(t)〉

and
I2 =

∫ T

0

〈∫ t

0

D⊺
sh(t,X(· ∧ t)) d−(Y −X)(s), dX(t)

〉
.

Notice that U ′(H) has a finite moment of any order. To conclude the proof, it then
suffices to show that for γ in Assumption 5.28

Eπ

[∣∣∣∣∫ T

0

〈h(t, Y (· ∧ t)), dY (t)〉 −
∫ T

0

〈h(t,X(· ∧ t)), dX(t)〉 − I1 − I2

∣∣∣∣γ]
= o(Eπ[[X − Y ]T ]

γ/2).

(5.32)

Plugging I1 and I2 into (5.32), we obtain

Eπ

[∣∣∣∣∫ T

0

〈h(t, Y (· ∧ t)), dY (t)〉 −
∫ T

0

〈h(t,X(· ∧ t)), dX(t)〉 − I1 − I2

∣∣∣∣γ]
≤ CEπ

[∣∣∣∣∫ T

0

〈h(t, Y (· ∧ t))− h(t,X(· ∧ t)), d(Y −X)(t)〉
∣∣∣∣γ]

+ CEπ

[∣∣∣∣∫ T

0

〈
h(t, Y (· ∧ t))− h(t,X(· ∧ t))−

∫ t

0

D⊺
sh(t,X(· ∧ t)) d−(Y −X)(s), dX(t)

〉∣∣∣∣γ]
:= J1 + J2.

It follows from BDG inequality and Hölder inequality that

J1 ≤ CEπ

[
[X − Y ]

γ/2
T sup

t∈[0,T ]

|h(t, Y (· ∧ t))− h(t,X(· ∧ t))|γ
]

≤ CEπ[[X − Y ]T ]
γ/2Eπ

[
sup

t∈[0,T ]

|h(t, Y (· ∧ t))− h(t,X(· ∧ t))|2γ/(2−γ)

]1−γ/2

≤ CEπ[[X − Y ]T ]
γ/2Eπ

[
sup

t∈[0,T ]

|h(t, Y (· ∧ t))− h(t,X(· ∧ t))|2
]1−γ/2

= o(Eπ[[X − Y ]T ]
γ/2).
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Here, the third line follows from the boundedness of h and γ ∈ (1, 2). For J2, similarly
by BDG inequality and Assumption 5.28 we deduce

J2 ≤ CEπ

[
sup

t∈[0,T ]

∣∣∣∣h(t, Y (· ∧ t))− h(t,X(· ∧ t))−
∫ t

0

D⊺
sh(t,X(· ∧ t)) d−(Y −X)(s)

∣∣∣∣γ[X]
γ/2
T

]
≤ o(Eπ[[X − Y ]T ]

γ/2).

The proof of Theorem 5.30 relies on the following proposition, which we adapt
from Acciaio et al. (2020, Remark 2.3 (4)).

Proposition 5.37. Let µ, ν ∈ M (X ). Then π ∈ Πbc(µ, ν) implies that (X,Y ) is
an (Ft ⊗ Gt)t∈I–martingale. Suppose additionally that X and Y have the martingale
representation property under µ and ν respectively. Then (X,Y ) is an (Ft ⊗ Gt)t∈I–
martingale under π ∈ Π(µ, ν) implies that π is bi-causal.

Proof of Theorem 5.30. Recall that H =
∫ T

0
〈h(t,X(· ∧ t)), dX(t)〉 and

φ(t) =
p{Dt+DtU(H)− U ′(H)D⊺

th(t,X(· ∧ t))}.

We remark D+DU(H) is well-defined from the regularity condition of h. By Lemma 5.34,
it suffices to verify (5.21), (5.22), and (5.23) with P = {π ∈ Πbc(µ, ∗) : Π(X ×
·) ∈ M (X )} and

r = Eµ

[∫ T

0

‖φ(t)‖2F dt
]1/2

.

To show (5.21), we notice that h is bounded and U has a bounded second derivative,
and derive

Eπ

[
U

(∫ T

0

〈h(t, Y (· ∧ t)), dY (t)〉
)]

≤ C

(
1 + Eπ

[(∫ T

0

〈h(t, Y (· ∧ t)), dY (t)〉
)2
])

≤ C(1 + Eπ[[Y −X]T ]).

Now, we verify (5.22). Since Dsh(t,X(· ∧ t)) satisfies conditions in Theorem 5.12, by
Theorem 5.12 we calculate∫ T

0

〈h(s,X(· ∧ s)), d−(Y −X)(s)〉+
∫ T

0

〈∫ t

0

D⊺(s)h(t,X(· ∧ t)) d−(Y −X)(s), dX(t)

〉
=

∫ T

0

〈h(s,X(· ∧ s)), d−(Y −X)(s)〉+
∫ T

0

〈∫ T

s

Dsh(t,X(· ∧ t)) dX(t), d−(Y −X)(s)

〉
−
∫ T

0

〈D⊺
sh(s,X(· ∧ s)), d[[X,Y −X]](s)〉F

=

∫ T

0

〈DsH, d−(Y −X)(s)〉 −
∫ T

0

〈D⊺
sh(s,X(· ∧ s)), d[[X,Y −X]](s)〉F.
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Therefore, Lemma 5.36 yields

Eπ

[
U

(∫ T

0

〈h(t, Y (· ∧ t)), dY (t)〉
)
− U

(∫ T

0

〈h(t,X(· ∧ t)), dX(t)〉
)]

= Eπ

[
U ′(H)

∫ T

0

〈DsH, d−(Y −X)(s)〉 − U ′(H)

∫ T

0

〈D⊺
sh(s,X(· ∧ s)), d[[X,Y −X]](s)〉F

]
(5.33)

+ o
(
Eπ[d(X,Y )2]1/2

)
.

Since U ′(H) has a finite moment of any order, a simple application of Hölder inequality
gives DU(H) = U ′(H)DH is (Y − X) forward–γ′ integrable for any γ′ ∈ [1, γ).
Furthermore, we notice that DU(H) satisfies the assumption in Proposition 5.11, and
hence we deduce

Eπ

[
U ′(H)

∫ T

0

〈DsH, d−(Y −X)(s)〉
]
= Eπ

[∫ T

0

〈Ds+DsU(H), d[[X,Y −X]](s)〉F

]
.

Plugging the above equality into estimate (5.33) yields

Eπ

[
U

(∫ T

0

〈h(t, Y (· ∧ t)), dY (t)〉
)
− U

(∫ T

0

〈h(t,X(· ∧ t)), dX(t)〉
)]

= Eπ

[∫ T

0

〈Ds+DsU(H)− U ′(H)D⊺
sh(s,X(· ∧ s)), d[[X,Y −X]](s)〉F

]
+ o
(
Eπ[d(X,Y )2]1/2

)
= Eπ

[∫ T

0

〈φ(s), d[[X,Y −X]](s)〉F

]
+ o
(
Eπ[d(X,Y )2]1/2

)
. (5.34)

Hence, by Kunita–Watanabe inequality, we establish (5.22) holds as follows:

Eπ

[
U

(∫ T

0

〈h(t, Y (· ∧ t)), dY (t)〉
)
− U

(∫ T

0

〈h(t,X(· ∧ t)), dX(t)〉
)]

≤ Eπ

[∫ T

0

〈φ(s)φ(s)⊺, d[[X]](s)〉F

]1/2
Eπ

[∫ T

0

〈Id, d[[Y −X]](s)〉F

]1/2
+ o
(
Eπ[d(X,Y )2]1/2

)
≤ Eµ

[∫ T

0

‖φ(t)‖2F dt
]1/2

Eπ[d(X,Y )2]1/2 + o
(
Eπ[d(X,Y )2]1/2

)
.

We turn now to (5.23) and define Φ· =
∫ ·
0
φ(s) dX(s). We fix u > 0 such that

L∗(r) = ur − L(u). For δ > 0, set πδ = (Id, Id+uδΦ)#µ. By direct computation, we
have

Eπδ
[d(X,Y )p] = u2δ2Eµ[[Φ]T ] = u2δ2Eµ

[∫ T

0

‖φ(t)‖2F dt
]
.
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On the other hand, we notice

Eπδ

[
U ′(H)

∫ T

0

〈DsH, d−(Y −X)(s)〉 − U ′(H)

∫ T

0

〈D⊺
sh(s,X(· ∧ s)), d[[X,Y −X]](s)〉F

]
= Eπδ

[∫ T

0

〈φ(s), d[[X,Y −X]](s)〉F

]
= uδEµ

[∫ T

0

〈φ(s), φ(s) d[[X]](s)〉F

]
= uδEµ

[∫ T

0

‖φ(t)‖2F dt
]
.

Hence, it follows from estimate (5.34) that

Eπδ

[
U

(∫ T

0

〈h(t, Y (· ∧ t)), dY (t)〉
)
− U

(∫ T

0

〈h(t,X(· ∧ t)), dX(t)〉
)]

= uδEµ

[∫ T

0

‖φ(t)‖2F dt
]
+ o(δ).

(5.35)

The proof would be complete if it was the case that πδ ∈ P . However, in general πδ
is not a bi-causal coupling. To remedy this, we consider the following approximation
to πδ. Let φn be a sequence of bounded predictable processes such that

lim
n→∞

Eµ

[∫ T

0

‖φ(t)− φn(t)‖2F dt
]
= 0.

We construct πn
δ = (Id, Id+uδΦn)#µ, where Φn

· =
∫ ·
0
φn(s) dX(s). Following the same

argument as above, we have

Eπn
δ

[
U

(∫ T

0

〈h(t, Y (· ∧ t)), dY (t)〉
)
− U

(∫ T

0

〈h(t,X(· ∧ t)), dX(t)〉
)]

= uδEµ

[∫ T

0

〈φ, φn〉F dt
]
+ o(δ).

We notice that indeed X + uδΦn is a regular martingale. Moreover, for δ sufficiently
small, X + uδΦn is a non-degenerate martingale, and hence X + uδΦn has the mar-
tingale representation property. This implies for sufficiently small δ, πn

δ is a bi-causal
coupling by Proposition 5.37. Therefore, there exists a sequence of bi-causal cou-
plings π̃δ such that estimate (5.35) still holds if we replace πδ by π̃δ. This concludes
the proof.

5.7 Auxiliary proofs
In the section, we present the remaining proofs, in particular for the results in Sec-
tion 5.3.
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Proof of Proposition 5.35. The first part follows directly from (Bartl and Wiesel,
2023, Lemma 3.1). We prove the second part by induction. The base case N =

1 is trivial, and we assume the statement holds for N − 1. Then there exists
(0,Φε

1, . . . ,Φ
ε
N−1) with |Φε

n − Φn| < ε for 1 ≤ n ≤ N − 1 such that the projec-
tion of Φε

#µ on the first N − 1 marginals is a martingale. We may further assume
(0,Φε

1, . . . ,Φ
ε
n−1) is an injection for any 1 ≤ n ≤ N − 1.

Now, it suffices to construct Φε
N with |Φε

N − ΦN |∞ < ε such that Φε
#µ ∈ M (X )

and Φε : X → X is injective. We write pjε(x) = b4x
ε
c ε
4

and construct

Φε
N(0, x1, . . . , xN) = pjε ◦ΦN(0, x1, . . . , xN) + φε(xN)− r(0, x1, . . . , xN−1),

where pjε is the projection to the ε/4 grid, φε : Rn → (0, ε/4)d is a measurable
bijection, and r is the residual given by

r(0, x1, . . . , xN−1) = EµN−1
[pjε ◦ΦN(0, x1, . . . , xN−1, XN)+φ

ε(XN)]−Φε
N−1(0, x1, . . . , xN−1).

Here, µN−1 is the disintegration kernel of µ given by

µ(dx1, . . . , dxN) = µ(dx1, . . . , dxN−1)µN−1(x1, . . . , xN−1, dxN).

It is clear that |Φε
N−ΦN |∞ < ε and Φε

#µ ∈ M (X ). We now verify that Φε is injective.
Assume Φε(0, x1, . . . , xN) = Φε(0, x′1, . . . , x

′
N). By induction assumption, we derive

xn = x′n for 1 ≤ n ≤ N − 1. Therefore, this implies

pjε ◦ΦN(0, x1, . . . , xN) + φε(xN) = pjε ◦ΦN(0, x
′
1, . . . , x

′
N) + φε(x′N)

which further implies xN = x′N . Therefore, Φε is injective and (Id,Φε)#µ ∈ Πbc(µ, ∗).

Proof of Propositions 5.6 and 5.9. We start by proving Proposition 5.6. If η is a
simple step function, then the result is immediate from the continuity of Dtf . This
implies

f(ω + η)− f(ω) =

∫ 1

0

n∑
k=1

〈Dtkf(ω + λη), ek〉 dλ.

Now, we assume η ∈ AC0([0, T ];Rn) and take a sequence of simple step functions
ηn(t) =

∑n
k=1(t

n
k+1 − tnk)e

n
k1[tnk ,T ](t) such that

sup
1≤k≤n

(tnk+1 − tnk)(|enk | ∨ 1) → 0 and
n∑

k=1

enk1[tnk ,t
n
k+1)

→ η̇ in L1.
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We can always achieve the above by refining partitions. Therefore, we deduce that
ηn converges to η in the uniform topology. This gives

f(ω + η)− f(ω) = lim
n→∞

f(ω + ηn)− f(ω)

= lim
n→∞

∫ 1

0

n∑
k=1

(tnk+1 − tnk)〈Dtnk
f(ω + ληn), enk〉 dλ

= lim
n→∞

∫ 1

0

∫ T

0

n∑
k=1

〈Dtnk
f(ω + ληn), enk1[tnk ,t

n
k+1)

(t)〉 dt dλ.

Since Dtf has left limits, the integrand converges to 〈Dt−f(ω + λη), η̇(t)〉, which
is equal to 〈Dtf(ω + λη), η̇(t)〉 dt ⊗ dλ–a.e. Furthermore, as Df is boundedness
preserving, we derive by the dominated convergence theorem that

f(ω + η)− f(ω) =

∫ 1

0

∫ T

0

〈Dtf(ω + λη), η̇(t)〉 dt dλ,

from which (5.10) follows.
To conclude that the pathwise and the classical Malliavin derivatives coincide, it

suffices to observe that W 1,2
0 ⊆ AC0 and that, by (5.7) and (5.10), we have∫ T

0

〈Dtf(X), η̇(t)〉 dt =
∫ T

0

〈Dtf(X), η̇(t)〉 dt, ∀η ∈ W 1,2
0 .

Before we prove the stochastic Fubini theorem (Theorem 5.12), we first show that
the forward integral indeed agrees with the Itô integral if the integrand is predictable.
The below can be viewed as an Lγ extension of Russo and Vallois (1993, Proposition
1.1).

Proposition 5.38. Let γ ∈ [1, 2), A be a predictable process, and B be a regular
martingale with d[B](t) = ξ(t) dt. We assume either

EP

[
sup

t∈[0,T ]

|A(t)|2γ/(2−γ)

]
<∞ and EP

[∫ T

0

|ξ(t)| dt
]
<∞, (5.36)

or

EP

[∫ T

0

|A(t)|2 dt
]
<∞ and EP

[
sup

t∈[0,T ]

|ξ(t)|γ/(2−γ)

]
<∞. (5.37)

Then A is B forward–γ integrable, and the forward integral coincides with the Itô
integral, i.e., ∫ T

0

〈A(t), d−B(t)〉 =
∫ T

0

〈A(t), dB(t)〉.
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Proof. We write the Hardy–Littlewood maximal process as

A∗(t) = sup
ε∈[0,T ]

1

ε

∫ t

(t−ε)∨0
|A(s)| ds for t ∈ [0, T ].

By Hardy–Littlewood maximal inequality, we have
∫ T

0
|A∗(t)|2 dt ≤ C

∫ T

0
|A(t)|2 dt,

where C is a deterministic constant. Combining this with the assumption and Hölder
inequality, we derive either

EP

[(∫ T

0

|A∗(t)|2 d[B](t)

)γ/2
]
≤ EP

[
sup

t∈[0,T ]

|A(t)|γ
(∫ T

0

|ξ(t)| dt
)γ/2

]
<∞,

or

EP

[(∫ T

0

|A∗(t)|2 d[B](t)

)γ/2
]
≤ EP

[(∫ T

0

|A∗(t)|2 dt
)γ/2

sup
t∈[0,T ]

|ξ(t)|γ/2
]
<∞.

Then by Lebesgue dominated convergence theorem, we obtain

lim
ε→0

EP

(∫ T

0

∣∣∣∣1ε
∫ t

(t−ε)∨0
A(s) ds− A(t)

∣∣∣∣2 d[B](t)

)γ/2
 = 0,

as the integrand converges to 0 from Lebesgue differentiation theorem and is domi-
nated by C

(∫ T

0
|A∗(t)|2 d[B](t)

)γ/2
. Therefore, by BDG inequality, we have the Lγ

convergence

lim
ε→0

∫ T

0

〈
1

ε

∫ t

(t−ε)∨0
A(s) ds, dB(t)

〉
=

∫ T

0

〈A(t), dB(t)〉.

On the other hand, by the Stochastic Fubini theorem (Veraar, 2012, Theorem 2.2),
the above limit is equal to

lim
ε→0

∫ T

0

〈
1

ε

∫ t

(t−ε)∨0
A(s) ds, dB(t)

〉
= lim

ε→0

1

ε

∫ T

0

〈∫ T

0

A(s)1[s,(s+ε)∧T ](t) ds, dB(t)

〉
= lim

ε→0

1

ε

∫ T

0

∫ T

0

〈A(s)1[s,(s+ε)∧T ](t), dB(t)〉 ds

= lim
ε→0

1

ε

∫ T

0

〈A(t), B((t+ ε) ∧ T )− B(t)〉 dt

=

∫ T

0

〈A(t), d−B(t)〉.

Therefore, A is B forward–γ integrable, and the forward integral coincides with the
Itô integral.
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Proof of Theorem 5.12. By the definition of the forward integral, we write∫ T

0

〈∫ T

s

Ψ(s, t)⊺ dX(t), d−M(s)

〉
= lim

ε→0

1

ε

∫ T

0

〈∫ T

s

Ψ(s, t)⊺ dX(t), (M((s+ ε) ∧ T )−M(s))

〉
ds

= lim
ε→0

1

ε

∫ T

0

〈∫ (s+ε)∧T

s

(Ψ(s, t)⊺ −Ψ(t, t)⊺) dX(t), (M((s+ ε) ∧ T )−M(s))

〉
ds

+ lim
ε→0

1

ε

∫ T

0

〈∫ (s+ε)∧T

s

Ψ(t, t)⊺ dX(t), (M((s+ ε) ∧ T )−M(s))

〉
ds

+ lim
ε→0

1

ε

∫ T

0

〈∫ T

s

Ψ(s, t)(M((s+ ε) ∧ t)−M(s)), dX(t)

〉
ds

− lim
ε→0

1

ε

∫ T

0

〈∫ (s+ε)∧T

s

Ψ(s, t)(Mt −M(s)), dX(t)

〉
ds

:= J1 + J2 + J3 − J4.

It suffices to show the Lγ convergence of J1, J2, J3, and J4 and compute their limits.
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For J1, by Hölder inequality, BDG inequality, and Fubini theorem, we obtain

lim
ε→0

EP

[∣∣∣∣∣1ε
∫ T

0

〈∫ (s+ε)∧T

s

(Ψ(s, t)⊺ −Ψ(t, t)⊺) dX(t),M((s+ ε) ∧ T )−M(s)

〉
ds
∣∣∣∣∣
γ]

≤ lim
ε→0

C

εγ

∫ T

0

EP

[∣∣∣∣∣
〈∫ (s+ε)∧T

s

(Ψ(s, t)⊺ −Ψ(t, t)⊺) dX(t),M((s+ ε) ∧ T )−M(s)

〉∣∣∣∣∣
γ]

ds

≤ lim
ε→0

C

εγ

∫ T

0

EP

∣∣∣∣∣
∫ (s+ε)∧T

s

(Ψ(s, t)⊺ −Ψ(t, t)⊺) dX(t)

∣∣∣∣∣
2γ/(2−γ)

1−γ/2

× EP

[
|M((s+ ε) ∧ T )−M(s)|2

]γ/2 ds

≤ lim
ε→0

C

εγ

∫ T

0

EP

(∫ (s+ε)∧T

s

‖Ψ(s, t)−Ψ(t, t)‖2F dt
)γ/(2−γ)

1−γ/2

EP [[M ]((s+ ε) ∧ T )− [M ](s)]γ/2 ds

≤ lim
ε→0

C

∫ T

0

(
1

ε

∫ (s+ε)∧T

s

EP

[
‖Ψ(s, t)−Ψ(t, t)‖2F

]
dt
)γ/(2−γ)

ds

1−γ/2

×
(
1

ε

∫ T

0

EP [[M ]((s+ ε) ∧ T )− [M ](s)] ds
)γ/2

≤ lim
ε→0

C

∫ T

0

(
1

ε

∫ (s+ε)∧T

s

EP

[
‖Ψ(s, t)−Ψ(t, t)‖2F

]
dt
)γ/(2−γ)

ds

1−γ/2

EP [[M ]T ]
γ/2.

Since we assume sups,t∈[0,T ] ‖Ψ(s, t)‖ ∈ L2γ/(2−γ), and limt→s+EP [‖Ψ(s, t)−Ψ(t, t)‖2F] =
0, by Lebesgue dominated convergence theorem we obtain the Lγ convergence of

J1 = lim
ε→0

1

ε

∫ T

0

〈∫ (s+ε)∧T

s

(Ψ(s, t)⊺ −Ψ(s, t)⊺) dX(t), (M((s+ ε) ∧ T )−M(s))

〉
ds = 0.

We write Y (s) =
∫ s

0
Ψ⊺(t, t) dX(t) which is a regular martingale. Reorganizing the
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second term J2, we obtain

J2 = lim
ε→0

1

ε

∫ T

0

〈∫ (s+ε)∧T

s

Ψ(t, t)⊺ dX(t),M((s+ ε) ∧ T )−M(s)

〉
ds

= lim
ε→0

1

ε

∫ T

0

〈Y ((s+ ε) ∧ T )− Y (s),M((s+ ε) ∧ T )−M(s)〉 ds

= lim
ε→0

1

ε

∫ T

0

(〈Y ((s+ ε) ∧ T ),M((s+ ε) ∧ T )〉 − 〈Y (s),M(s)〉) ds

− lim
ε→0

1

ε

∫ T

0

〈M(s), Y ((s+ ε) ∧ T )− Y (s)〉 ds

− lim
ε→0

1

ε

∫ T

0

〈Y (s),M((s+ ε) ∧ T )−M(s)〉 ds

= 〈YT ,MT 〉 −
∫ T

0

〈M(s), dY (s)〉 −
∫ T

0

〈Y (s), dM(s)〉

=

∫ T

0

〈Ψ(s, s), d[[X,M ]](s)〉F.

The Lγ convergence of the second last line is justified from Proposition 5.38 by taking
(A,B) = (Y,M) and (A,B) = (M,Y ) respectively. For J3, we interchange the
Lebesgue integral and the Itô integral by (Veraar, 2012, Theorem 2.2) and derive

J3 = lim
ε→0

1

ε

∫ T

0

〈∫ t

0

Ψ(s, t)(M((s+ ε) ∧ t)−M(s)) ds, dX(t)

〉
=

∫ T

0

〈∫ t

0

Ψ(s, t) d−M(s), dX(t)

〉
.

The last equality does converge in Lγ by combining BDG inequality and the assump-
tion that {Ψ(·, t)}t∈[0,T ] is M· uniformly forward–γ integrable. For the last term J4,
we apply (Veraar, 2012, Theorem 2.2) and BDG inequality. We derive

lim
ε→0

EP

[∣∣∣∣∣1ε
〈∫ T

0

∫ (s+ε)∧T

s

Ψ(s, t)(Mt −M(s)), dX(t)

〉
ds
∣∣∣∣∣
γ]

= lim
ε→0

EP

[∣∣∣∣1ε
∫ T

0

〈∫ t

(t−ε)∨0
Ψ(s, t)(Mt −M(s)) ds, dX(t)

〉∣∣∣∣γ]

≤ lim
ε→0

CEP

 sup
s,t∈[0,T ]

‖Ψ(s, t)‖γF

(∫ T

0

1

ε2

(∫ t

t−ε∨0
|M(t)−M(s)| ds

)2

dt
)γ/2


≤ lim

ε→0
C

(∫ T

0

EP

[
sup

s∈[(t−ε)∨0,t]
|M(t)−M(s)|2

]
dt
)γ/2

EP

[
sup

s,t∈[0,T ]

‖Ψ(s, t)‖2γ/(2−γ)
F

]1−γ/2

≤ lim
ε→0

C

(∫ T

0

EP [[M ](t)− [M ](t−ε)∨0] dt
)γ/2

= 0.
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Summarizing above estimates, we conclude
∫ T

· Ψ(·, t)⊺ dX(t) is M· forward–γ inte-
grable and ∫ T

0

〈∫ T

s

Ψ(s, t)⊺ dX(t), d−M(s)

〉
= J1 + J2 + J3 − J4

=

∫ T

0

〈∫ t

0

Ψ(s, t) d−M(s), dX(t)

〉
+

∫ T

0

〈Ψ(t, t), d[[X,M ]](t)〉F.
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