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What is optimal transport?

Motivation

Given two spaces X and Y , we want to find the ‘optimal’ way to transport
some mass under distribution µ to ν with respect to some cost function c.

Figure: Optimal transport [Tho18].
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What is optimal transport?

Motivation

Given two spaces X and Y , we want to find the ‘optimal’ way to transport
some mass under distribution µ to ν with respect to some cost function c.

Assumption

X and Y are Polish.

µ and ν are probability measures on X and Y respectively.

Cost function c : X × Y → R ∪ {+∞} is lower-semi continuous and
bounded by below.
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Monge’s formulation

Definition

We say T : X → Y is a transport map from µ to ν if

ν = T#µ := µ ◦ T−1.

Monge’s optimal transport

Minimize M(T ) =

∫
X
c(x, T (x))µ(dx),

over all the transport maps T such that T#µ = ν.

Bad news: such a T may not exist! (e.g. µ is an atom.)
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Kantorovich’s formulation

Definition

Given µ and ν, the set of transport plans Π(µ, ν) is given by

Π(µ, ν) = {π ∈ P(X × Y ) : π1 = µ, π2 = ν},

where πi are the marginals of π.

Kantorovich’s optimal transport

Minimize K(π) =

∫
X×Y

c(x, y)π(dx,dy),

over all the transport plans π ∈ Π(µ, ν).

Good news: not only is Π(µ, ν) nonempty, but also the minimizer π∗ is
attainable!
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Monge (1746-1818) meets Kantorovich (1912-1986)

One can easily notice that

inf K(π) ≤ infM(T ).

Theorem (Brenier’s Theorem [Vil09])

Let X and Y be Rd and c(x, y) = |x− y|2. Assume µ is absolutely
continuous to the Lebesgue measure, then there exists a minimizer T ∗ for
the Monge problem. Moreover,

π∗ := (Id, T ∗)#µ ∈ Π(µ, ν)

is a minimizer of the Kantorovich problem and

K(π∗) = M(T ∗).
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Casual optimal transport

Motivation

If we have extra knowledge on the information flow, how can we find the
‘optimal’ transport without using the knowledge from the future?

Assumption

X and Y are Polish spaces with right continuous filtration (FX
t )t∈I

and (FY
t )t∈I . Here, I can be [N ], N, [0, 1] or R≥0.

µ and ν are probability measures on X and Y .

Cost function c : X × Y → R ∪ {+∞} is lower-semi continuous and
bounded by below.
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Monge’s formulation

Definition

We say T : (X, (FX
t )) → (Y, (FY

t )) is a causal transport map from µ to ν
if

T#µ = ν.

T is non-anticipative, i.e., for any A ∈ FY
t we have T−1(A) ∈ µFX

t .

Monge’s casual optimal transport

Minimize M(T ) =

∫
X
c(x, T (x))µ(dx),

over all the causal transport maps T .
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Kantorovich’s formulation

Definition

Given µ and ν, the set of causal transport plans Πc(µ, ν) is given by

Πc(µ, ν) = {π ∈ Π(µ, ν) : θ(·, A) ∈ µFX
t for any A ∈ FY

t },

where θ is the disintegration of π, i.e., π(dx, dy) = θ(x,dy)µ(dx).

Kantorovich’s causal optimal transport

Minimize K(π) =

∫
x×y

c(x, y)π(dx,dy),

over all the causal transport plans π ∈ Πc(µ, ν).
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Good and bad news

Is the minimizer for Kantorovich’s causal optimal transport still attainable?

Yes and no. We need to pay some price to ask the filtration to be
compatible to the topology.

Compactness of Πc(µ, ν)

[Las18] (FY
t )t∈I satisfies some extra regularity.

[ABVZ20] µ has some weak continuity with respect to (FX
t )t∈I .

Under either of the above cases, Πc(µ, ν) is compact.

Remark

Let X = Y = C([0, 1],R) the continuous path space equipped with
natural filtration and uniform norm. Then both of the above assumptions
are satisfied.
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Wasserstein distance

Definition

Given two probability measures µ, ν on (filtered) Polish space X, their
Wasserstein distance is given by

d(µ, ν) =
{

inf
Π(µ,ν)

K(π)
}1/p

,

and their adapted Wasserstein ‘distance’ is given by

dc(µ, ν) =
{

inf
Πc(µ,ν)

K(π)
}1/p

.

Here, 1 ≤ p < ∞ and the cost function has the form c = ρp where ρ is a
lower-semi continuous metric on X.

Yifan Jiang (University of Oxford) Robust Analysis via Optimal Transport April 6, 2022 12 / 20



Wasserstein distance

Example

Let X = R× R equipped with F1 = B(R)× {R, ∅} and
F2 = B(R)× B(R). Cost function c : X ×X → R is given by

(x1, x2) 7→ |x1 − x2|2R2 .

Let µ = 1
2δ(0,1) +

1
2δ(0,−1) and µε =

1
2δ(ε,1) +

1
2δ(−ε,−1).

Then, as ε → 0
d(µ, µε) → 0,

but
dc(µ, µε) → 1.
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Robust optimization

Framework

V (δ) = inf
a∈A

sup
ν∈Bδ(µ)

∫
X
f(x, a)ν(dx).

X is a (filtered) Polish state space.

A is an admissible control set.

Bδ(µ) is some perturbation of µ with strength δ.

What do we want?

V ′(0) = lim
δ→0+

V (δ)− V (0)

δ
.
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Some results

KL divergence [Lam16]
▶ X = Rd, A = {a}, BKL

δ (µ) KL ball.
▶ V ′(0) =

√
Varµ(f(X, a)).

Wasserstein distance [BDOW21]
▶ X = Rd, A convex subset of Rn, BW

δ (µ) Wasserstein-2 ball.

▶ V ′(0) = infa∗∈A∗
0

(∫
X
∥∇xf(x, a

∗)∥2µ(dx)
)1/2

, where A∗
0 is the set of

minimizer of

inf
a∈A

∫
X

f(x, a)µ(dx).

Adapted Wasserstein distance
▶ X = Rd × Rd equipped with the natural filtration, A convex subset of

Rn, BAW
δ (µ) adapted Wasserstein-2 ball.

▶ V ′(0) = infa∗
(∫

X
∥f1(x1, a

∗)∥2 + ∥∇x2
f(x1, x2, a

∗)∥2µ(dx1,dx2)
)1/2

,
where f1(x1, a

∗) =
∫
Rd ∇x1f(x1, x2, a

∗)µ2(x1,dx2) and
µ(dx1,dx2) = µ2(x1,dx2)µ1(dx1) is the disintegration.

Yifan Jiang (University of Oxford) Robust Analysis via Optimal Transport April 6, 2022 15 / 20



Some results

KL divergence [Lam16]
▶ X = Rd, A = {a}, BKL

δ (µ) KL ball.
▶ V ′(0) =

√
Varµ(f(X, a)).

Wasserstein distance [BDOW21]
▶ X = Rd, A convex subset of Rn, BW

δ (µ) Wasserstein-2 ball.

▶ V ′(0) = infa∗∈A∗
0

(∫
X
∥∇xf(x, a

∗)∥2µ(dx)
)1/2

, where A∗
0 is the set of

minimizer of

inf
a∈A

∫
X

f(x, a)µ(dx).

Adapted Wasserstein distance
▶ X = Rd × Rd equipped with the natural filtration, A convex subset of

Rn, BAW
δ (µ) adapted Wasserstein-2 ball.

▶ V ′(0) = infa∗
(∫

X
∥f1(x1, a

∗)∥2 + ∥∇x2
f(x1, x2, a

∗)∥2µ(dx1,dx2)
)1/2

,
where f1(x1, a

∗) =
∫
Rd ∇x1f(x1, x2, a

∗)µ2(x1,dx2) and
µ(dx1,dx2) = µ2(x1,dx2)µ1(dx1) is the disintegration.

Yifan Jiang (University of Oxford) Robust Analysis via Optimal Transport April 6, 2022 15 / 20



Some results

KL divergence [Lam16]
▶ X = Rd, A = {a}, BKL

δ (µ) KL ball.
▶ V ′(0) =

√
Varµ(f(X, a)).

Wasserstein distance [BDOW21]
▶ X = Rd, A convex subset of Rn, BW

δ (µ) Wasserstein-2 ball.

▶ V ′(0) = infa∗∈A∗
0

(∫
X
∥∇xf(x, a

∗)∥2µ(dx)
)1/2

, where A∗
0 is the set of

minimizer of

inf
a∈A

∫
X

f(x, a)µ(dx).

Adapted Wasserstein distance
▶ X = Rd × Rd equipped with the natural filtration, A convex subset of

Rn, BAW
δ (µ) adapted Wasserstein-2 ball.

▶ V ′(0) = infa∗
(∫

X
∥f1(x1, a

∗)∥2 + ∥∇x2
f(x1, x2, a

∗)∥2µ(dx1,dx2)
)1/2

,
where f1(x1, a

∗) =
∫
Rd ∇x1f(x1, x2, a

∗)µ2(x1,dx2) and
µ(dx1,dx2) = µ2(x1,dx2)µ1(dx1) is the disintegration.

Yifan Jiang (University of Oxford) Robust Analysis via Optimal Transport April 6, 2022 15 / 20



Open problems and partial answers

General problems

Under what conditions will Monge meet Kantorovich again in causal
optimal transport? Moreover, do we have parallel Brenier’s Theorem for
causal optimal transport?

Specific problems

Let X be C([0, 1],R), D([0, 1],R) or S ′
(R) equipped with the natural

filtration. What is the ‘suitable’ cost function?
Some ‘nice’ candidates:

Uniform norm c(ω, ω′) = ∥ω − ω′∥∞.

Cameron-Martin norm c(ω, ω′) = ∥ω − ω′∥H .

Variation norm c(ω, ω′) = ∥ω − ω
′∥BV .
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One last thing

What the answer of V ′(0) when X is the continuous path space, c is
induced by Cameron-Martin norm and f ∈ L2(µ)?

Partial answer:

µ is Wiener measure γ, then we have

V ′(0) =
(∫ 1

0
Eγ

[
∥Eγ [Df |Fs]∥2

]
ds

)1/2
,

where D denotes the Malliavin derivative [NØP08].

µ is a continuous martingale measure with the martingale
representation property, then we have

V ′(0) =
(∫ 1

0
Eµ

[
∥∇wEµ[f |Fs]∥2

]
ds

)1/2
,

where ∇w denotes the vertical derivative [CF13].
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Thank you!
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