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Problem setting

We consider a scalar conservation law

ρt = H(ρ)x,

with a random initial condition

ρ(0, x) = ξ(x).

Question

What can we say about the law of ρ(t, ·)?
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Some ambiguity

Ambiguity

Which probability space should the solution live in?

What kind of probabilistic property we should consider?

Under which sense we should solve the conservation law?

Short answer

We are interested in the evolution of the distribution of the entropy
solution with (spectrally negative) Levy initial data on the canonical
probability space.
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Stochastic processes

Definition

We say a map X : [0,∞)× Ω → R is a stochastic process on a filtered
probability space (Ω,F , (FX

t ),P), and
is (FX

t )-adapted if X(t) is FX
t -measurable,

is (further) Markov if E[X(t)|FX
s ]

a.s.
= E[X(t)|X(s)] for any t > s,

is (further) homogenous if P(X(t) ∈ ·|X(s)) only depends on t− s.

Canonical probability space

Let D([0,∞]) denote the space of cadlag (right continuous and with left
limit) paths. Almost all the stochastic processes of interest have a cadlag
version modification, i.e., paths are cadlag P-a.s. Thus, we can
pushforward (Ω,F , (FX

t ),P, X) to (D,B(D), (Bt), X#P, X̄).
Here, X̄ is given by the evaluation map

X̄(t, ω) := ω(t).
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Levy processes

Definition

We say a stochastic process X(t) is a Levy process on (Ω,F ,P) if it
satisfies

X(0) = 0 P-a.s,

X(t)−X(s)
d
= X(t− s) for any t > s,

X(t)−X(s) is independent to FX
s for any t > s,

limh→0 P(|X(t+ h)−X(t)| > ε) = 0 for any t and ε.

We say U is an infinite divisible random variable if U can be written as a
sum of n i.i.d. random variables for any n.

Property

We point out for Levy process X, X(1) is an infinite divisible random
variable, and reversely given an infinite divisible random variable U there

exists a unique (in law) Levy process X with X(1)
d
= U .
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Examples (continuous)

We consider the most classical and popular example of continuous Levy
process which is essentially a continuous limit of random walk.

Brownian motion

We say Bt is a Brownian motion if

B0 = 0 almost surely,

The paths of B are almost surely continuous,

B has independent increments,

Bt −Bs
d
= N(0, t− s).

Remark

The paths of B are actually (12 − ε)-Holder continuous and have finite
quadratic variation.
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Examples (continuous)

Figure: A sample path of the Brownian motion
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Examples (continuous)

We give several characterizations of Brownian motion.

Definition

Bt is a Brownian motion if both Bt and B
2
t − t are continuous martingales

starting at 0.

Construction

Let Zn be a sequence i.i.d. normal random variables. Then,

Bt :=
∑
n

√
2Zn

sin((n− 1
2)πt)

(n− 1
2)π

is a Brownian motion.
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Examples (jump)

Poisson process

We say Nt is a Poisson process with intensity λ > 0 if

N0 = 0 almost surely,

The paths of N are almost surely cadlag,

N has independent increments,

Nt −Ns
d
= Pois(λ(t− s)).

Compound Poisson process

Let Dn be a sequence of i.i.d. random variables. We say Xt is a
compound Poisson process given by

Xt :=

Nt∑
n=1

Dn.
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Examples (jump)

Figure: A sample path of the Poisson process
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Characterization of Levy processes

Levy–Khinchine formula

Let X be a Levy process with characteristic exponent Ψ. Then, there exist
(unique) a ∈ R, σ ≥ 0, and a measure Π, with no atom at zero, satisfying∫
(1 ∧ x2)Π(dx) <∞, such that

Φ(θ) =
logE[exp(iθX(t))]

t
= iaθ−1

2
σ2θ2+

∫
R
[eiθx−1− iθx1[−1,1](x)]Π(dx).

Reversely, given a tuple (a, σ,Π) there exists a Levy process with the
corresponding characteristic exponent.

Levy–Ito decomposition

For Levy process X with the above characteristic exponent, it can be
written as:

Xt = at+ σBt +X
(1)
t +X

(2)
t .

X(1) and X(2) corresponds to the large jump and the small jump in X.
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Scalar conservation laws
Cauchy problem of a scalar conservation law is given by{

ρt = H(ρ)x,

ρ(0, x) = ρ0(x).
(1)

Distribution solution

Let T > 0 and denote πT = [0, T ]×R. Let H : R → R be C1. We say a
ρ ∈ L∞ is a distributional solution to (1) if it satisfies∫

πT

ρft −H(ρ)fx dt dx+

∫
R
ρ0(x)f(0, x) dx = 0,

for any test function f ∈ C∞
c (πT ).

If u is a piecewise C1 distributional solution, then it satisfies
Rankine–Hugoniot condition

ẋ(t) = −H(ρ−)−H(ρ+)

ρ− − ρ+
.
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Scalar conservation laws

Entropy solution

We say ρ : πT → R is an entropy solution to (1) if it satisfies, for all
k ∈ R,

|ρ− k|t − sgn(ρ− k)H(ρ)x ≤ 0

in the distributional sense.

Entropy solution (alternative)

We say ρ : πT → R is an entropy solution to (1) if it satisfies, for all
convex f with g′ = f ′H ′,

f(ρ)t − g(ρ)x ≤ 0

in the distributional sense.
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Scalar conservation laws

Viscosity vanishing solution

Let ρε : πT → R be the solution to

ρεt = H(ρε)x + ερεxx

with the initial condition

ρε(0, x) = ρ0(x).

We say ρ : πT → R is a viscosity vanishing solution to (1) if it is the limit
of ρε as ε→ 0.

Theorem

If ρ is a viscosity vanishing solution of (1), then ρ is an entropy solution.
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Hamilton–Jacobi equation

The scalar conservation law (1) is closely related to the following
Hamilton–Jacobi equation {

ut = H(ux),

u(0, x) = u0(x).
(2)

Viscosity solution

We say u is a viscosity solution of (2), if it satisfies u− ϕ has a local
maximum at point (t0, x0), then ϕt(t0, x0) ≤ H(ϕx(t0, x0)) and u− ψ has
a local minimum at point (t0, x0), then ψt(t0, x0) ≥ H(ψx(t0, x0)) for any
ϕ, ψ ∈ C∞.
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Hamilton–Jacobi equation

Theorem

Let u be the unique viscosity solution of the Hamilton–Jacobi equation
(2), then ρ = ux is the entropy solution of the scalar conservation law (1)
with the initial condition

ρ0(x) =
d

dx
u0(x).

Let H∗(s) = supρ(ρs+H(ρ)) denote the Legendre transform of −H and
call u0(s) =

∫ s
0 ρ0(s) ds the initial potential. We define the Hopf–Lax

functional

I(s;x, t) = u0(s) + tH∗(
x− s

t
).

The characteristic through (t, x) is given by the variational principle

y(t, x) = sup{s : I(s;x, t) = inf
r
I(r;x, t)}.

We call y(t, x) the inverse Lagrangian.
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Hopf–Lax formula

Theorem

Assume H is strictly concave. The entropy solution of the scalar
conservation law (1) is implicitly given by

H ′(ρ(t, x)) =
y(t, x)− x

t
.

In particular, the entropy solution of the Burgers’ equation H(ρ) = −ρ2/2
has the form

ρ(t, x) =
x− y(t, x)

t
,

where

y(t, x) = arg+max
s

{u0(s) +
(x− s)2

2t
}.
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Conjecture I

In [Menon and Srinivasan(2010)] authors showed spectrally negative
Markov process is preserved by the conservation law. Furthermore, they
conjectured the evolution equation of the generator of the solution with
bounded variation spectrally negative Levy initial data.
Let A(t) be the generator of ρ(·, t) which is given by

A(t)J(y) = lim
x→0

Ey[J(ρ(x, t))]− J(y)

x
,

for any J ∈ C∞
c (R). For spectrally negative Levy process with bounded

variation paths, its generator has the form of

A(t)J(y) = b(t, y)J ′(y) +

∫ y

−∞
(J(z)− J(y)) f(t, y,dz)

where b(t, y) characterizes the drift and f(t, y, ·) describes the law of the
jumps.
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Conjecture II

The conjecture of [Menon and Srinivasan(2010)] is that the evolution of
the generator A for ρ(·, t) is given by the Lax equation

Ȧ = [A,B] = AB − BA (3)

for B which acts on test functions J by

B(t)J(y) = −H ′(y)b(t, y)J ′(y)−
∫ y

−∞

H(y)−H(z)

y − z
(J(z)−J(y)) f(t, y,dz).
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Kaspar and Rezakhanlou(2016)

Assumption (a)

The initial condition ρ0 = ρ0(x) is a bounded pure-jump Markov
process starting at ρ0(0) = 0 and evolving for x > 0 according to a rate
kernel g(ρ−, dρ+). We assume that for some constant P > 0 the kernel g
is supported on

{(ρ−, ρ+) : 0 ≤ ρ− ≤ ρ+ ≤ P}

and has total rate which is constant in ρ−:

λ =

∫
g(ρ−, dρ+)

for all 0 ≤ ρ− ≤ P .
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Kaspar and Rezakhanlou(2016)

Assumption (b)

The Hamiltonian function H : [0, P ] → R is smooth, convex, has
nonnegative right-derivative at p = 0 and noninfinite left-derivative at
p = P .
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Evolution equation I

Definition

We say that a continuous mapping f : [0,∞) → K+[0, P ] is a solution of
the kinetic equation {

ft = Lκf

f(0, ρ−, dρ+) = g(ρ−, dρ+),

where

Lκf(t, ρ−, dρ+)

=

∫
(H[ρ∗, ρ+]−H[ρ−, ρ∗])f(t, ρ−, dρ∗)f(t, ρ∗, dρ+)

−
[∫

H[ρ+, ρ∗]f(t, ρ+, dρ∗)−
∫
H[ρ−, ρ∗]f(t, ρ−, dρ∗)

]
f(t, ρ−, dρ+).
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Evolution equation II

Definition

We say that a continuous mapping ℓ : [0,∞) → M+[0, P ] is a solution of
the marginal equation {

ℓt = L0ℓ

ℓ(0, dρ0) = δ0(dρ0),

where

L0ℓ(t, dρ0) =

∫
H[ρ∗, ρ0]ℓ(t, dρ∗)f(t, ρ∗, dρ0)

−
[∫

H[ρ0, ρ∗]f(t, ρ0, dρ∗)

]
ℓ(t, dρ0).
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Main theorem

Theorem

Under the above assumptions, the entropy solution ρ to{
ρt = H(ρ)x

ρ(0, x) = ξ(x),
(4)

for each fixed t > 0 has x = 0 marginal given by ℓ(t, dρ0) and for
0 < x <∞ evolves according to rate kernel f(t, ρ−, dρ+).

Remark

It has been shown in [Menon and Srinivasan(2010)] that the evolution
equations for f and ℓ are equivalent to the Lax equation

Ȧ = AB − BA.

Moreover, the well-posedness of the evolution equation is independent to
this theorem.
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Sketch of the proof

The proof of the main theorem can be decomposed into the following
steps:

1 show the well-posedness of the evolution equation;

2 convert the problem to a problem of bounded area scalar conservation
law with a random boundary condition;

3 construct a random particle system whose law corresponds to the
evolution equation;

4 show the law of the bounded area problem is the same as the one
induced by the random particle system.

Remark

The first step can be shown by classical discretization approximation. The
second step comes from the finite speed of propagation. We will omit
these two steps and focus on the last two steps due to the time constraint.
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Bounded area problem

Theorem

For any fixed L > 0, consider the scalar conservation law
ρt = H(ρ)x (x, t) ∈ (0, L)× (0,∞)

ρ = ξ x ∈ [0, L]× {t = 0}
ρ = ζ (x, t) ∈ {x = L} × (0,∞)

(5)

with initial condition ξ (restricted to [0, L]), open boundary at x = 0, and
random boundary ζ at x = L. Suppose the process ζ has ζ(0) = ξ(L) and
evolves according to the time-dependent rate kernel H[ρ,ρ+]f(t, ρ,dρ+)
independently of ξ given ξ(L). Then for all t > 0 the law of ρ(·, t) is as
follows:

(i) the x = 0 marginal is ℓ(t, dρ0), and

(ii) the rest of the path is a pure-jump process with rate kernel
f(t, ρ−, dρ+).
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Random particle system

x

ρ

ρ0

ρ1

ρ2

ρ3

ρ4

x1 x2 x3 x4

Figure: For each t > 0, the solution ρ(x, t) is a nondecreasing, pure-jump process in x. We will
see that for any fixed L > 0, we have a.s. finitely many jumps for x ∈ [0, L] and that ρ(·, t) on
this interval can be described by two (finite) nondecreasing sequences (x1, . . . , xN ; ρ0, . . . , ρN ).
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Random particle system

Sticky dynamic description

ρ(·, t) can be fully characterized by the tuple (x1, . . . , xN ; ρ0, . . . , ρN ),
where xi are the position of shocks and ρi is the corresponding velocity.
Now, we can view each shock as a particle, and its speed is decided by the
Rankine–Hugoniot condition. To be more specific,

ẋi = −H[ρi−1, ρi] = −H(ρi−1)−H(ρi)

ρi−1 − ρi
.

The point here is that when two shocks collide, we should choose the
correct solution, namely the entropy solution as follows. When xi = xi+1,
the ith particle is annihilated, and the velocity of the (i+ 1)th particle
changes from −H[ρi, ρi+1] to

ẋi+1 = −H[ρi−1, ρi+1]. (6)

In the case where several consecutive particles collide with each other at
the same instant, all but the rightmost particle is annihilated.
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Random particle system

For C > 0 and n a positive integer, write

∆C
n = {(a1, . . . , an) ∈ Rn : 0 < a1 < · · · < an < C}

and ∆C
n for the closure of this set in Rn.

Configuration space

For L as in the bounded area problem, the configuration space Q for the
sticky particle dynamics is

Q =

∞⊔
n=0

Qn, Qn = ∆L
n ×∆P

n+1.

A typical configuration is q = (x1, . . . , xn; ρ0, . . . , ρn) ∈ Qn when n > 0,
or q = (ρ0) ∈ Q0 = {ρ0 : 0 ≤ ρ0 ≤ P} when n = 0.
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Random dynamic system

Dynamics

Our notation for the particle dynamics is as follows:

(i) For 0 ≤ s ≤ t and q ∈ Q, write

ϕtsq = ϕt−s
0 q

according to the sticky particle dynamics, without random entry
dynamics at x = L.

(ii) Given a configuration q = (x1, . . . , xn, ρ0, . . . , ρn) and ρ+ > ρn, write
ϵρ+q for the configuration (x1, . . . , xn, L, ρ0, . . . , ρn, ρ+).

(iii) Write Φt
sq for the random evolution of the configuration with random

boundary at x = L according to the boundary process ζ. In
particular, if the jumps of ζ between times s and t occur at times
s < τ1 < · · · < τk < t with values ρn+1 < · · · < ρn+k, then

Φt
sq = ϕtτkϵρn+k

ϕτkτk−1
ϵρn+k−1

· · ·ϕτ2τ1ϵρn+1ϕ
τ1
s q.
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Random dynamic systems

Remark

We remark that the described random dynamic system exactly
characterizes the random dynamic of the bounded area problem. There is
no need to let the number of the particles go to infinity to approximate the
accurate dynamic. In fact, the number of the particles is also random in
our particle systems.
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Random measures

Our aim is to show that the law of Φt
0q has the desired marginal ℓ(t, dρ0)

at x = 0 and the desired jump rate f(t, ρ−, dρ+).
We construct a candidate law µ(t, dq) on Q as follows. Take N to be
Poisson with rate λL, x1, . . . , xN uniform on ∆L

N , and ρ0, . . . , ρN

distributed on ∆P
N+1 according to the marginal ℓ and transitions f

independently of the xi:

µ(t, dq) := e−λL
∞∑
n=0

δn(dN)µn(t, dq),

where µ0(t, dq) = ℓ(t, dρ0) and

µn(t, dq) = 1∆L
n
(x1, . . . , xn) dx1 · · · dxn ℓ(t, dρ0)

n∏
j=1

f(t, ρj−1, dρj),

for n > 0.
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Random measures

We then only need to show

Law(Φt
0q) = µ(t, dq) (7)

where q has initial distribution µ(0, dq). Furthermore, we have the
one-to-one map from Q to M[0, L] as

q 7→ π(q, dx) = ρ0δ0 +

n∑
i=1

(ρi − ρi−1)δxi , (q ∈ Qn).

So, instead of (7) we would like to show the law of the random measure
π(Φr

0q, ·) is identical to that of π(q′, ·) where q′ is distributed by µ(t, dq′).
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Proof of step 4

Fix some time T > 0 and consider F (t, q) = EG(ΦT
t q) where G takes the

form of a Laplace functional:

G(q) = exp

(
−
∫
J(x)π(q, dx)

)
= exp

(
−ρ0J(0)−

n∑
i=1

(ρi − ρi−1)J(xi)

)

for J ≥ 0 a continuous function on [0, L]. We aim to show that

d

dt

∫
EG(ΦT

t q)µ(t, dq) = 0 (8)

for 0 < t < T , from which it will follow that∫
EG(ΦT

0 q)µ(0, dq) =

∫
G(q)µ(T, dq)

and implies the result.
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Formal calculation
We formally calculate∫

F (t, q)µ(t, dq)− F (s, q)µ(s, dq)

=

∫
(F (t, q)− F (s, q))µ(t, dq) +

∫
F (s, q)(µ(t, dq)− µ(s, dq)).

Lemma

For any n ≥ 0 and any 0 ≤ s < t we have

∥µn(t, ·)− µn(s, ·)− (t− s)(L∗µn)(t, ·)∥TV = o(t− s) (9)

where the norm is total variation and (L∗µn)(t, dq) is defined to be some
signed kernel.

So, we only need to show∫
(F (t, q)− F (s, q))µ(t, dq) ≈ (t− s)

∫
F (s, q)L∗µ(s, dq).
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Bertoin(1998)

So far we only discussed the case that the solution has a finite variation.
In [Bertoin(1998)], for Burges equation the Brownian initial data has been
discussed. We recall the result here.

Theorem

Consider Burgers’ equation with Brownian initial data ξ(x). Then, for
each fixed t > 0, the backward Lagrangian y(x, t) has the property that

y(x, t)− y(0, t)

is independent of y(0, t) and is a nondecreasing Levy process. Its
distribution is the same as that of the first passage process

x 7→ inf{z ≥ 0 : tξ(z) + z > x}.
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Statistical solution

Definition

A statistical solution of Burgers’ equation is a sequence of probability
measures (µt)t≥0 on (D,B(D)) such that for any v ∈ C∞

c ,

∂tµ̂t(v) = i

∫
D

∫
R

1

2
u(x)2v′(x) dx exp(i

∫
R
u(x)v(x) dx) dµt(du),

where µ̂t is the Fourier transform of µt given by

µ̂t(v) =

∫
D
exp(i

∫
R
u(x)v(x) dx) dµt(u).

Observation

From [Carraro and Duchon(1998)], we know Burgers’ equation always has
a statistical solution with a Levy initial data. However, only for the process
without positive jump (rarefaction is excluded), its statistical solution
coincides with the law of its entropy solution.
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Thank you!
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