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Distributionally robust optimization

Framework

inf
a∈A

Eµ[f(X, a)].

Ω is a Polish space.

A is an admissible control set.

f is a cost function.

µ is the reference distribution (prior knowledge) of the model.

What are we interested in?

The first order approximation of V (δ) at 0:

V ′(0) = lim
δ→0+

V (δ)− V (0)

δ
.
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Previous results

KL divergence [Lam, 2016]
▶ Ω = Rd, A = {a}, BKL

δ (µ) KL ball.
▶ V ′(0) =

√
Varµ(f(X, a)).

Wasserstein distance [Bartl et al., 2021]
▶ Ω = Rd, A convex subset of Rn, BW

δ (µ) Wasserstein-2 ball.

▶ V ′(0) =
(
Eµ∥∇xf(X, a∗)∥2

)1/2
, where a∗ is the unique minimizer of

infa∈A Eµ[f(X, a)].

Question

Can we generalize previous results to a dynamic setting?
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What is adapted Wasserstein distance?

Dynamic setting

Let (Rd, | · |) be the state space, (Ω,F) = ((Rd)N ,B) the canonical space
of N -step stochastic processes, X and Y the coordinate processes on
Ω× Ω.

Adapted Wasserstein distance

Give µ, ν ∈ Pp(Ω), their adapted Wasserstein ‘distance’ is defined as

AWp(µ, ν) := inf
π∈Πc(µ,ν)

(
Eπ∥X − Y ∥p

)1/p
,

where Πc(µ, ν) is the causal couplings between µ and ν. Metric ∥ · ∥ on Ω
is given by

∥x∥p :=
∑
n

|xn|p, x = (x1, . . . , xN ) ∈ Ω = (Rd)N .
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Causal coupling

Definition1[Acciaio et al., 2020]

Given µ, ν ∈ Pp(Ω), the causal coupling is given by

Πc(µ, ν) = {π ∈ Π(µ, ν) : θ(·, A) ∈ µFX
n for any A ∈ FY

n }, (⋆)

where θ is the disintegration of π, i.e., π(dx, dy) = θ(x,dy)µ(dx).

Motivation

Assume a causal coupling π ∈ Πc(µ, ν) is generated by a Monge transport
map T : Ω → Ω, i.e.,

π = (Id, T )#µ.

Then (⋆) implies T is adapted (non-anticipative), i.e., for any A ∈ FY
n we

have T−1(A) ∈ µFX
n .

1For equivalent definitions, see [Lassalle, 2018, Backhoff-Veraguas et al., 2020].
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A classical example

Example

We take N = 2, d = 1, p = 1, then Ω = R2. Let µ = 1
2δ(0,1) +

1
2δ(0,−1)

and µε =
1
2δ(ε,1) +

1
2δ(−ε,−1).

Then, as ε → 0
W1(µ, µε) → 0,

but
AW1(µ, µε) → 1!!

1 2
1

0

1
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A classical example

1 2
1

0

1

Remark

The optimal stopping problem supτ E[Xτ ] shows the remarkable
probabilistic difference between µε and µ. In fact, the adapted Wasserstein
topology is the coarsest topology on prob measures which makes the
optimal stopping problem continuous, see [Backhoff-Veraguas et al., 2020].
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Main results

Theorem2

Consider the DRO problem

V (δ) = inf
a∈A

sup
ν∈Bδ(µ)

Eν [f(X, a)],

where Bδ(µ) = {ν : AWp(µ, ν) ≤ δ}. Under suitable assumptions, we
have

V ′(0) = inf
a∗∈A∗

0

Eµ
[ N∑
n=1

|Eµ
[
∂nf(X, a∗)|Fn

]
|q
]1/q

.

We remark that the sensitivity of DRO problem under the classical
Wasserstein perturbation is given by

V ′(0) = inf
a∗∈A∗

0

Eµ
[∑

n

|∂nf(X, a∗)|q
]1/q

.

2An analogous result for closed-loop control is independently derived in
[Bartl and Wiesel, 2022].
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Main results

Assumption

The continuous cost function f : Ω×A → R satisfies

x 7→ f(x, a∗) is differentiable for any a∗ ∈ A∗. Moreover, ∇f(x, a∗)
is continuous on Ω×A∗ and satisfies

|∇f(x, a∗)| ≤ C(a∗)(1 + ∥x∥p−1),

for any a∗ ∈ A∗, x ∈ Ω and some locally bounded function
C : A∗ → R.

We have A∗
δ ̸= ∅ for sufficiently small δ and the limit points of any

sequence {a∗k ∈ A∗
δk
} with δk → 0 are contained in A∗

0.
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Sketch of the proof (upper bound)

We show the upper bound of V ′(0). Let a∗ ∈ A∗
0. Then

V (δ)− V (0) ≤ sup
ν∈Bδ(µ)

Eν [f(X, a∗)]− Eµ[f(X, a∗)]

= sup
π∈Cδ

Eπ[f(Y, a∗)− f(X, a∗)]

= sup
π∈Cδ

∫ 1

0
Eπ[⟨∇f(X + λ(Y −X), a∗), Y −X⟩] dλ.

Let FX,Y
n = FX

n ∨ FY
n . Then the above inner expectation is equal to∑

Eπ
[
Eπ[∂nf(X + λ(Y −X), a∗)(Yn −Xn)|FX,Y

n ]
]

≤
∑

∥Yn −Xn∥Lp(π)∥Eπ[∂nf(X + λ(Y −X), a∗)|FX,Y
n ]∥Lq(π)

≤ δEπ
[∑

|Eπ[∂nf(X + λ(Y −X), a∗)|FX,Y
n ]|q

]1/q
.
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Sketch of the proof (upper bound)

Therefore, as δ → 0

lim sup
δ→0

V (δ)− V (0)

δ

≤ lim sup
δ→0

∫ 1

0
Eπ

[ N∑
n=1

|Eπ
[
∂nf(X + λ(Y −X), a∗)|FX,Y

n

]
|q
]1/q

dλ

≤ lim sup
δ→0

∫ 1

0
Eπ

[ N∑
n=1

|Eπ
[
∂nf(X, a∗)|FX,Y

n

]
|q
]1/q

= Eµ
[ N∑
n=1

|Eµ
[
∂nf(X, a∗)|Fn

]
|q
]1/q

.

The last equality comes from the causality of π.
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Sketch of the proof (lower bound)
Let δk → 0 and a∗k ∈ A∗

δk
. Therefore, we have

V (δk)− V (0) ≥ Eνk [f(Y, a∗k)]− Eµ[f(X, a∗k)]

= Eπk [f(Y, a∗k)− f(X, a∗k)]

=

∫ 1

0
Eπk [⟨∇f(X + λ(Y −X), a∗k), Y −X⟩] dλ

=

∫ 1

0
Eµ[⟨∇f(X + αkλT (X), a∗k), αkT (X)⟩] dλ.

Here, the causal coupling πk ∈ Cδ(µ) is given by

πk = (Id, Id + αkT )#µ,

where

Tn(x1, · · · , xn)
µ−a.s.
:= Eµ

[
∂nf(X, a∗)|(X1, · · · , Xn) = (x1, · · · , xn)

]
×
∣∣∣Eµ

[
∂nf(X, a∗)|(X1, · · · , Xn) = (x1, · · · , xn)

]∣∣∣ q−p
p
.
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Sketch of the proof (lower bound)

As δ → 0,

lim inf
δ→0

V (δ)− V (0)

δ

≥ lim
k→∞

∫ 1

0
Eµ[⟨∇f(X + αkλT (X), a∗k), T (X)⟩] dλ

= Eµ[⟨∇f(X, a∗), T (X)⟩]

= Eµ
[ N∑
n=1

∣∣Eµ
[
∂nf(X, a∗)|Fn

]∣∣q].
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Martingale constraint

Theorem

Let Mp be the space of martingale probability measures on (Ω,F) with
finite p-moment. We consider

V (δ) = inf
a∈A

sup
ν∈Mδ(µ)

Eν [f(X, a)],

where Mδ(µ) = Bδ(µ) ∩Mp. Under suitable assumptions, we have

V ′(0) = inf
a∗∈A∗

0

inf
Λ

Eµ
[ N∑
n=1

|Eµ
[
∂nf(X, a∗)|Fn

]
+ Λn−1(X)− Λn(X)|q

]1/q
,

where Λ is non-anticipative and Λn : Ω → Rd is smooth and compactly
supported.
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Martingale constraint

Asian option

We consider a discrete monitoring Asian call with strike K. Let µ be the
risk neutral measure and set the risk-free interest as 0. Then the price of
the Asian call is given by Eµ[f(X)], where f is the payoff

f(x) =
( N∑
n=1

xn −K
)+

.

Let p = 2, then the sensitivity of the price V ′(0) is explicitly given by

V ′(0) = inf
Λ

Eµ
[ N∑
n=1

|Eµ
[
∂nf(X)|Fn

]
+ Λn−1(X)− Λn(X)|2

]1/2
= Eµ

[ N∑
n=1

µ(

N∑
n=1

Xn ≥ K|Fn)
2
]1/2

.
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Optimization with cost of weak-type
For the simplicity, we restrict ourselves to p = 2 and two-step processes.
Consider a problem depending on the condition law of the reference
distribution, e.g.

V (δ) = sup
ν∈B̃δ(µ)

Eν [f(X1,Law(X2|X1))].

Lions’ derivative

Given a function ϕ : P2(R
d) → R, the lift of ϕ on some probability space

(Ω̂, F̂ , P̂) is given by
Φ(X) = ϕ(Law(X)),

for any X ∈ L2(Ω̂, P̂). The Lions’ derivative of ϕ at µ is defined as

∂ϕ(µ)(X) := DΦ(X),

where Law(X) = µ and DΦ is the Fréchet derivative of Φ.
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Optimization with cost of weak-type

Theorem

We consider
V (δ) = sup

ν∈B̃δ(µ)

Eν [f(X1, ν
X1)].

Under suitable assumptions, V ′(0) is given by

V ′(0) = Eµ1

[
|∂1f(X1, µ

X1)|2 + Ê[|∂2f(X1, µ
X1)(X̂X1)|2]

]1/2
,

where µ(dx1, dx2) = µ1(dx1)µ
x1(dx2) and X̂x1 is a random variable on

(Ω̂, F̂ , P̂) following µx1 .
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Optimization with cost of weak-type

Optimal stopping problem

We consider a simple two-step optimal stopping problem

V (0) = sup
τ

Eµ[g(Xτ )].

By Snell envelope, the value function has the form of

Eµ[f(X1, µ
X1)] := Eµ[max(g(X1),Eµ[g(X2)|X1])].

Under suitable conditions, the sensitivity of the optimal stopping problem
is explicitly given by

V ′(0) = Eµ1

[
|g′(X1)|21A + Ê|g′(X̂X1)|21Ac

]1/2
,

where A = {g(X1) > Eµ[g(X2)|X1]} and X̂x1 is a random variable on
(Ω̂, F̂ , P̂) following µx1 .
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Thank you!
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